# **Regulatory Clearances for Clinical Use**

Regulatory cleared and marketed in 28+ countries ( E FDA



### Indications for Use

Us2.ai software is used to process acquired transthoracic cardiac ultrasound images, to analyze and make measurements on images in order to provide automated estimation of several cardiac structural and functional parameters, including left/ right atrial and ventricular linear dimensions, volumes, systolic function and diastolic function, measured by B mode, M mode and Doppler (PW, CW, tissue) modalities. The data produced by this software is intended to be used to support qualified cardiologists, sonographers, or other licensed professional healthcare practitioners for clinical decision-making. Us2.ai is indicated for use in adult patients.

### Us2.ai Software

### **Main Findings**

- LV systolic function
- LV diastolic function
- LV geometry
- RV function RV size

• LV size

- RA size
- LA size

### **Automated Measurements**

| Us2.v1      |                   |       |                      |       |                                 |
|-------------|-------------------|-------|----------------------|-------|---------------------------------|
| Us2.v2      |                   |       |                      |       |                                 |
| Us2.v2 (EU) |                   |       |                      |       |                                 |
| LV          | DecT              | LV    | LV GLS               | TrV   | TR Vena Contracta               |
| LV          | MV-A              | LV    | A4C LV GLS           | TrV   | TR Jet Area                     |
| LV          | MV-Adur           | LV    | A3C LV GLS           | RV    | RV area A4C (d)                 |
| LV          | MV-E              | LV    | A2C LV GLS           | RV    | RV area A4C (s)                 |
| LV          | e' lateral        | LV    | LV Regional Strain   | RV    | RVEDV MOD A4C                   |
| LV          | e' septal         | RV    | TAPSE                | RV    | RVESV MOD A4C                   |
| LV          | a' lateral        | RV    | RV E'                | PV    | PV VTI                          |
| LV          | a' septal         | RV    | RV A'                | RVOT  | RVOT VTI                        |
| LV          | s' lateral        | RV    | RV S'                | RVOT  | RVOT proximal                   |
| LV          | s' septal         | Aorta | Sinotubular Junction | IVC   | IVC max                         |
| LV          | LVEDV MOD biplane | Aorta | Sinus valsalva       | IVC   | IVC min                         |
| LV          | LVEF MOD biplane  | LVOT  | LVOT Diameter        | Aorta | Asc. Ao                         |
| LV          | LVESV MOD biplane | LVOT  | PW LVOT Vmax         | LA    | MR Jet Area                     |
| LV          | LVSV MOD biplane  | LVOT  | PW LVOT VTI          | LA    | MR Jet Ratio                    |
| LV          | IVSd              | LVOT  | PW LVOT Pmax         | LA    | CW MR VIT                       |
| LV          | LVIDd             | LVOT  | PW LVOT Pmean        | LA    | CW MR VMax                      |
| LV          | LVIDs             | AoV   | CW AoV Vmax          | LA    | CW MR Vmean                     |
| LV          | LVPWd             | AoV   | CW AoV VTI           | LA    | CW MR Pmax                      |
| LV          | E/e' mean         | AoV   | CW AoV Pmax          | LA    | CW MR Pmean                     |
| RV          | RVIDd             | AoV   | CW AoV Pmean         | LA    | GLS                             |
| LA          | LAESV MOD biplane | AoV   | AVA                  | LV    | LVEDV MOD biplane<br>(contrast) |
| RA          | RAA               | AoV   | VR                   | LV    | LVESV MOD biplane               |
| TRV         | TR Vmax           |       |                      | LV    | LVEF MOD biplane<br>(contrast)  |

### **Disease Detection**



Heart Failure (HF) HF with reduced ejection fraction | HF with preserved ejection fraction | HF with mid-range ejection fraction



Pulmonary Hypertension



Cardiac Amyloidosis



Valvular Disease Aortic Stenosis









### Use Cases

### Al Echo Along the Disease Management Pathway



Website: www.us2.ai/

Publications: www.us2.ai/publications/

Contact Us: www.us2.ai/contact-us/ | info@us2.ai



## Configurations

Us2.ai is vendor agnostic, compatible with all echo devices and PACS manufacturers.

#### **Cloud Server**

- Us2.ai cloud software is hosted on secure region specific AWS servers
- Direct send from echo device or PACS to Us2.ai cloud. Results and reports are accessible via browser and/or sent to the PACS or EMR.



#### **On-site Server**

- Local server installation keeps all patient data secure within the local network.
- The local server runs Us2.ai and connects to PACS and the echo device, with results and reports accessible via browser and/or sent to the PACS or EMR.



## Software Pricing, Installation & Other Costs

Us2.ai offers a volume-based pricing model, with installation and associated costs varying by configuration. For detailed pricing and setup options, please contact us at info@us2.ai for a formal quotation.



# **Scientific Validation**

#### Us2.ai validation study

In a study of 600 patients, all point estimates of the Individual Equivalence Coefficient (IEC) were < 0, indicating that disagreement between AI measurements and human readers was lower than the disagreement among three expert echocardiography readers. The study demonstrated excellent agreement between AI processing and expert human interpretation across a wide range of echocardiographic measurements.



Tromp, J., Bauer, D., Claggett, B. L., Frost, M., Iversen, M. B., Prasad, N., Petrie, M. C., Larson, M. G., Ezekowitz, J. A., & Solomon, S. D. (2022). A formal validation of a deep learning-based automated workflow for the interpretation of the echocardiogram. Nature communications, 13(1), 6776. https://doi.org/10.1038/s41467-022-34245-1

#### Clinical advantages of Us2.ai

This randomized crossover trial investigated the impact of an AI-based automated echocardiographic analysis tool on clinical workflow efficiency. The study demonstrated that AI-based automatic analysis significantly improves the efficiency of screening echocardiography by reducing examination time, while maintaining image quality and reducing sonographer fatigue in real-world clinical practice.



Sakamoto, A., Kagiyama, N., Sato, E., Nakamura, Y., Kaneko, T., Miyazaki, S., Minamino, T. (2024). Artificial Intelligence-based Automated ECHOcardiographic Measurements and the Workflow of Sonographer (AI-ECHO): Randomized Crossover Trial. Presented at: AHA 2024. November 16, 2024. Chicago, IL. <a href="https://us2.ai/ai-echo-rct/">https://us2.ai/ai-echo-rct/</a>

### Time efficiency with Us2.ai

This study demonstrated how fully automated AI software reduces echocardiographic analysis time by 70% while maintaining accuracy, streamlining workflow for faster diagnoses and improved patient experience.



Hirata, Y., Nomura, Y., Saijo, Y. et al. Reducing echocardiographic examination time through routine use of fully automated software: a comparative study of measurement and report creation time. J Echocardiogr 22, 162–170 (2024). <u>https://doi.org/10.1007/s15274.023.00636-6</u>

For additional scientific publications, please visit our website: <u>www.us2.ai/publications/</u>