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a  b  s  t  r  a  c  t

Background:  Echocardiography  is  an  important  diagnostic  tool  in  cardiology  as  it  is essential  for heart
disease  treatment.  However,  its  time-consuming  nature  and  reliance  on user  expertise  constitutes  a
challenge  for  its use  in  high-volume  clinics.  Artificial  intelligence  (AI) offers  the  potential  to automate
tasks  performed  manually  by echocardiographers  and  promises  to improve  efficiency  and  diagnostic
consistency.
Aims:  To  evaluate  the  integration  of  AI-based  tools  in a  high-volume  echocardiography  department  and
assess  the  concordance  of  AI-generated  measurements  with  manually-performed  measurements.
Methods:  The  study  was  conducted  in the  echocardiography  department  of Bordeaux  University  Hospital.
Over  2 months,  894  echocardiograms  were performed  by  operators  with  three  experience  levels  (nurses,
residents  and  experts),  with  measurements  performed  by  AI and  humans.  The  statistical  analyses  assessed
measurement  agreement  between  both.
Results: The  AI  system  was  successfully  integrated  into  the  hospital’s  infrastructure  within  6  weeks.  Con-
cordance  analysis  revealed  good  to very  good  agreement  between  AI and  human  measurements  for  most
parameters,  especially  for ejection  fraction  (intraclass  correlation  coefficient  [ICC]:  0.81,  95%  confidence
interval  [95%  CI]:  0.78–0.85)  and  Doppler-based  flow measurements  (mitral  E  wave  velocity:  ICC 0.97,
95%  CI 0.95–0.98).  Bland-Altman  analysis  showed  a global  mean  difference  of  −4%  with  a  standard  devi-

ation  of 15%.  Subgroup  analysis  revealed  higher  concordance  for  experts  and  residents  compared  with
nurses  (mean  ICCs:  0.78  and  0.79  vs. 0.72,  respectively).
Conclusion:  AI  can  be effectively  integrated  into  clinical  echocardiography  practice,  with  high  agreement
between  AI  and  human  measurements.  Further  research  is needed  to  investigate  the  long-term  impact
on  clinical  outcomes  and  efficiency.

©  2025  Published  by  Elsevier  Masson  SAS.
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1. Abbreviations

AI artificial intelligence

CI confidence interval
EF ejection fraction
GDPR General Data Protection Regulation
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LS global longitudinal strain
CC intraclass correlation coefficient
P internet protocol
T information technology
V left ventricle/ventricular
VEF left ventricular ejection fraction
VOT left ventricular outflow tract
UC next unit of computing

ACS Picture Archiving and Communication System
D standard deviation
max maximal velocity
TI velocity time integral
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2. Background

Echocardiography is an important diagnostic tool in cardiology
as it is essential for heart disease treatment. The growing demand
for this examination has put increasing pressure on echocardiogra-
phy laboratories to improve their efficiency without compromising
diagnostic accuracy. The procedure is time-consuming (mean
30 minutes) because it requires multiple views, numerous mea-
surements and the production of detailed reports. This time may
vary depending on the complexity of the case and the experience
level of the operator [1]. In addition, echocardiography requires a
high operator expertise level, acquired through extensive training.

Artificial intelligence (AI) integration offers a promising solution
by automating several steps of echocardiographic analysis that tra-
ditionally rely on manual input [2]. Several studies have shown that
AI can facilitate various workflow aspects, including image acqui-
sition [3,4], image recognition [5], parameter measurements [6–8]
and diagnostic support [9–11]. Recently, commercial AI solutions
have entered the market, offering ‘all-in-one’ tools to streamline
department workflows.

In this study, we hypothesized that AI-based tools can be
seamlessly integrated into a standard ‘picture archiving and com-
munication system’ (PACS) environment and enable automated
measurements comparable with those performed manually by
echocardiographers.

The objectives of this study were: (1) to assess the ability of
public and commercial institutions to integrate AI solutions while
complying with regulatory patient data requirements and (2) to
evaluate the consistency of AI-generated measurements with those
performed manually in routine clinical practice over a 2-month
period.

3. Methods

3.1. Study setting and integration

The study was conducted in the echocardiography department
of Bordeaux University Hospital, where over 21,000 echocardio-
grams are performed annually. The global research comprised three
phases, the first two of which are the focus of this manuscript. The
third phase, which depends on the successful validation of the first
two phases, will assess AI solution impact on the echocardiogra-
phy department workflows. This project began with a contractual
agreement with Us2.ai for the loan of AI-equipped echocardiogra-
phy equipment specifically for this research.

3.2. Phase 1: technical integration and setup

The research project complied with the regulations on medical
data use. To simplify the procedures, we opted for internal data
processing within the institution, without transferring it from the
secure environment. We  therefore asked the AI service provider
Us2.ai to provide an AI processing station for physical integration
into the Bordeaux University Hospital’s Department of Information
Technology. The ‘next unit of computing’ (NUC) server was installed
with Us2.ai software. This server was integrated into the hospital’s
internal network as a web internet protocol (IP) server config-
ured with its own IP address and port number to operate within
the hospital’s data security framework, eliminating the need for a
virtual private network. It was connected to two Vivid E95 echocar-
diography machines (General Electric Healthcare, Chicago, IL, US)

in separate rooms. A dual data transmission system was  set up
so that each echocardiographic examination could be sent simul-
taneously to both the traditional PACS, including the reporting
software (ComPACS, MediMatic, Italy), and to the NUC. This enabled
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eal-time monitoring and data comparisons. The time required to
chieve this goal was  the primary quantitative evaluation parame-
er of Phase 1.

.3. Phase 2: data collection and comparative analysis

All human echocardiographic measurements in this study were
erformed manually, without the use of automated calculation
ools. This decision was made specifically to ensure a direct
nd unbiased comparison between AI-generated and human-
erformed measurements, avoiding any confounding effect from
re-existing automation. To compare measurements performed by
he echocardiographers under real conditions with those generated
y AI, all examinations from two specific rooms were systemati-
ally sent to both the PACS and the NUC over a 2-month period.
outine transthoracic echocardiography examinations were per-

ormed in these rooms, which were scheduled 2–6 months prior
o the actual procedure. Room operation followed a schedule set

 month in advance according to the department’s protocol, which
emained unchanged due to ongoing research.

The echocardiograms included in this study were systemati-
ally selected from two dedicated rooms where the AI system was
mplemented. These rooms were selected to ensure standardized AI
ntegration and data collection and to represent a controlled subset
f the total echocardiograms performed in our centre. No selection
riteria were applied based on patient characteristics, case com-
lexity or image quality. Thus, the discrepancy between the total
umber of echocardiograms performed in the department and the
umber of echocardiograms included in this study is due to this
argeted room selection and not to any exclusion based on clinical
actors. This approach ensured robust comparison between AI and
uman measurements under standardized conditions.

The echocardiographers were ‘nurse’ sonographers according
o a competence protocol approved by the ‘Agence Régionale pour
a Santé’ (ARS Nouvelle Aquitaine), ‘residents’ with < 12 months of
xperience and ‘expert’ echocardiographers with > 5 years of expe-
ience. Examinations carried out by nurses were systematically
alidated by an expert in echocardiography. Examinations were
erformed according to the traditional service protocol without
odification. During each examination, 20–30 electrocardiogram

ynchronized loops and 10–20 images, mainly Doppler recordings,
ere systematically recorded. Measurements were made directly

n the echocardiography machine, and standardized labels were
pplied to each 2D and Doppler echo image. At the end of each
xamination, the images and the Digital Imaging and Communi-
ations in Medicine Structured Report were automatically sent to
oth ComPACS and the NUC. The echocardiographer then gen-
rated the report in the ComPACS software and integrated the
easurements into the report. The images received on the NUC
ere processed automatically and without human supervision, tak-

ng as many measurements as possible, mainly depending on image
uality. The AI automatically identified the views and performed
ll possible measurements. The development method of this AI
as been detailed in a previous study [12,13]. The Us2.ai solution
sed in this study has already received Conformité Européene and
ood and Drug Administration marking, further emphasizing its
eliability and safety for clinical use.

.4. Statistical analysis

Statistical analyses were used to evaluate the agreement
etween automatic AI measurements and those performed

anually by echocardiographers. Primary statistical methods

ncluded Pearson correlation coefficients to assess linear corre-
ation between measurements, intraclass correlation coefficients
ICCs) to assess measurement reliability and agreement within
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and between observers, and Bland-Altman analyses to assess
agreement between methods and to identify any bias. Limits of
agreement were calculated to understand the variability and mean
discrepancies between AI and manual measurements.

It must be emphasized that the above-mentioned Pearson corre-
lation coefficients do not replace absolute agreement analysis (ICC
and Bland-Altman) but rather complement the overall understand-
ing of the results. It should also be noted that the AI measurements
were obtained a posteriori, after the echocardiographic examina-
tions and human measurements had been completed. In parallel,
echocardiography data were automatically transmitted to two
systems: the standard PACS used by echocardiographers and a
separate server containing the AI tool. Data from AI and humans
were compared only after automated extraction of anonymized
data, with no prior intervention or visibility from human opera-
tors. Echocardiographers were unaware of the AI measurements
during the manual performance or examination analysis.

Of note is that the acoustic quality of the windows was indirectly
estimated from demographic characteristics (age, weight) in the
absence of any specific subjective qualitative assessment.

Data from the PACS (ComPACS) and NUC were anonymized and
extracted to a secure database for analysis.

4. Results

4.1. Phase 1: technical integration and implementation

The AI system was successfully integrated into the informa-
tion technology (IT) infrastructure of Bordeaux University Hospital
within the planned timeframe. The NUC server equipped with the
Us2.ai software was put into operation 2 weeks after its arrival in
the IT department. After that, network integration, including the
accessible IP configuration, was completed within 10 days.

Within 4 weeks of project onset, the biomedical technicians had
set up the echocardiography equipment for dual transmission to
both ComPACS and the NUC. Functional testing over the following
5 days ensured system performance. This rapid integration met  our
primary goal of minimizing implementation time while complying
with data security regulations. The setup enabled seamless data
transfer between the echocardiography equipment and both the
traditional PACS (ComPACS) and the NUC, ensuring that all exam-
inations in the two designated rooms could be recorded without
interruption or data loss. Real-time monitoring on the NUC con-
firmed that the AI processed the data as intended without external
data transfer and strictly adhered to general data protection regu-
lation (GDPR) requirements.

4.2. Phase 2: analysis of concordances, population of
examinations, operators and indications

During this 2-month study, 894 echocardiographic examina-
tions were performed in patients with a mean ± standard deviation
(SD) age of 64.8 ± 16.3 years, ranging from young adults to the
elderly, 57% were male, mean ± SD weight was 76.0 ± 19.2 kg and
mean ± SD body surface area was 1.85 ± 0.09 m2. Echocardiograms
were performed by operators with three different expertise levels:
nurses performed 28 examinations, residents 258 examinations
and experts 569 examinations. The examinations were related to
various clinical indications. Significant mitral regurgitation was
present in 25% of cases and heart failure with preserved ejection
fraction (EF) in 22%. Other common findings were left ventricle

(LV) concentric remodelling (18%) and severe tricuspid regurgi-
tation (15%). Overall, 14% of echocardiograms were classified as
normal, while 86% showed pathological findings. Notable patholo-
gies other than significant mitral regurgitation and heart failure
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ith preserved EF included hypertrophic cardiomyopathy (12%),
eart failure with reduced EF (9%) and pulmonary hypertension
8%).

.2.1. Measurement description
A total of 31 pairs (paired measurements) were identified,

here both AI and humans performed the same measurement.
hese paired measurements included key parameters such as
eft ventricular ejection fraction (LVEF), ventricular diameters and
oppler-based flow measurements. The most frequently encoun-

ered pairs were Doppler analyses of the LV outflow tract (LVOT),
ollowed by measurements of the left atrial surface area, LV global
ongitudinal strain (GLS), and LV surface area. Each of these param-
ters had 700–800 corresponding values in both AI and operator
atasets. In contrast, mitral inflow Doppler measurements were

dentified as pairs in only 650 cases, demonstrating a lower rate of
oncurrent measurement between AI and operators.

In addition to the paired measurements, there were 65 measure-
ents identified exclusively by AI, without corresponding human
easurements. Among these, several measurements were related

o pairs where the echocardiographers did not complete the full
nalysis. Examples include indexing certain measurements to body
urface area, when appropriate, or calculating derived values such
s maximal or mean gradients (e.g. LVOT P and maximal veloc-
ty [Vmax]), as well as LV lengths in systole and diastole on apical
our-chamber views and indexed LV volumes on the same view.
dditionally, the AI identified structural measurements that were
ot exploited by echocardiographers, such as the right atrial surface
rea and various flow calculations. Interestingly, the AI also gener-
ted left atrial strain values and performed proximal isovelocity
urface area calculations on cases of regurgitation, measurements
hat were often overlooked or underutilized by the echocardiogra-
hers.

.2.2. Measurement comparisons and concordance
A total of 31 pairs were analysed in detail, allowing a targeted

omparison between measurements generated by AI and those
erformed manually by echocardiographers, with a mean ± SD of
18 ± 160 measurements per pair. The mean Pearson correlation
oefficient was 0.82 (P < 0.001), demonstrating a strong positive
orrelation between AI and human measurements. The Bland-
ltman analysis showed a mean difference of −4% with a mean
D of 15%, indicating a high agreement between the two methods,
hile the mean ICC was 0.78, further highlighting the strong global

greement between pairs (Table 1).
Among the measurements with the highest concordance, the

oppler measurements of mitral and aortic flows (Vmax, mean
elocity and velocity time integral [VTI]) stood out, along with tis-
ue Doppler velocities of the right ventricle, which demonstrated
he strongest agreement with an ICC of 0.90 (95% confidence inter-
al [95% CI]: 0.87–0.94). Other notable concordances were observed
or GLS (ICC: 0.82, 95% CI: 0.78–0.85) and the biplane LVEF (ICC:
.81, 95% CI: 0.78–0.85) (Table 1 and Fig. 1), mostly driven by the
nd-systolic parameters, highlighting the fact that tracing systolic
utline is easer that diastolic outlines.

Left atrial volume measurement was  also consistent, with a cor-
elation of 0.89 and an ICC of 0.71, 95% CI 0.67–0.76. However,
ess consistent results were found regarding the deceleration time
f the mitral E wave, tricuspid regurgitation wave and wall mea-
urements, with ICC values ranging from 0.35 to 0.60, indicating
eaker agreement between AI and operators. Moreover, the Spear-

an  correlation coefficient graphic of the tricuspid regurgitation
ave showed that even if the correlation was not high (r = 0.62), the

loud plot seemed to correlate well up to 2.5–2.7 m/s, which corre-
ponds to the limit of pulmonary hypertension definition (2.7 m/s).
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Table 1
Results of AI and humana (H) comparisons integrating Student’s t-test (P-value), correlation (Pearson), Bland & Altman data (mean differences, SD differences) and ICCs from the highest (top) to lowest (bottom) value parameters.

n AI mean AI SD H mean H SD Pearson P AI/H mean AI/H mean diff AI/H mean diff (%) AI/H SD diff AI/H SD diff (%) ICC 95% CI

MV-E (cm/s) 312 79.7 25.5 79.9 26.0 0.97 < 0.001 79.8 −0.17 0 6.45 8 0.97 0.95–0.98
AoV  VTI (cm) 602 32.7 16.4 34.7 17.0 0.97 < 0.001 33.7 −1.99 −6 4.23 13 0.96 0.94–0.97
MV-A  (cm/s) 281 74.5 25.4 73.8 26.1 0.96 < 0.001 74.2 0.66 1 7.24 10 0.96 0.93–0.98
AoV  Vmax (m/s) 604 1.6 0.7 1.7 0.7 0.96 < 0.001 1.7 −0.04 −2 0.20 12 0.96 0.93–0.98
AoV  Vmean (m/s) 604 1.1 0.5 1.2 0.5 0.96 < 0.001 1.2 −0.06 −5 0.14 12 0.96 0.93–0.98
LVESV  MOD  A4C (mL) 584 50.3 34.5 54.3 40.9 0.94 < 0.001 52.3 −4.00 −8 14.12 27 0.93 0.90–0.95
LVESV  MOD  biplane (mL) 467 48.6 32.7 55.5 41.4 0.95 < 0.001 52.0 −6.89 −13 14.20 27 0.91 0.89–0.93
RV  s’ (cm/s) 667 11.7 3.1 12.3 3.1 0.93 < 0.001 12.0 −0.63 −5 1.21 10 0.91 0.89–0.93
LVESV  MOD  A2C (mL) 531 45.5 32.2 51.5 39.9 0.92 < 0.001 48.5 −6.01 −12 16.09 33 0.89 0.87–0.92
LVEDV  MOD  biplane (mL) 467 100.4 40.5 116.2 50.6 0.93 < 0.001 108.3 −15.75 −15 19.49 18 0.86 0.83–0.88
LVEDV  MOD  A4C (mL) 585 103.8 42.4 116.4 52.2 0.90 < 0.001 110.1 −12.57 −11 22.81 21 0.85 0.83–0.88
LVOT  Vmean (m/s) 781 0.7 0.1 0.7 0.1 0.85 < 0.001 0.7 0.01 1 0.08 11 0.85 0.80–0.89
LVOT  Vmax (m/s) 781 1.0 0.2 1.0 0.2 0.88 < 0.001 1.0 0.04 4 0.11 10 0.85 0.80–0.89
LVEDV  MOD  A2C (mL) 531 95.9 42.1 108.5 49.7 0.88 < 0.001 102.2 −12.67 −12 23.27 23 0.84 0.82–0.87
LV  GLS (%) 238 −17.2 4.4 −15.8 4.2 0.87 < 0.001 −16.5 −1.37 8 2.22 −13 0.82 0.78–0.85
LVIDd  (mm) 657 48.1 9.1 50.1 8.9 0.83 < 0.001 49.1 −1.96 −4 5.18 11 0.81 0.78–0.85
LVEF  MOD  biplane (%) 467 54.5 11.9 56.0 12.8 0.82 < 0.001 55.3 −1.49 −3 7.51 14 0.81 0.78–0.85
LVOT  VTI (cm) 781 21.7 5.5 20.7 4.8 0.82 < 0.001 21.2 1.04 5 3.20 15 0.79 0.70–0.88
A2C  LV GLS (%) 257 −16.8 4.7 −16.2 4.5 0.76 < 0.001 −16.5 −0.67 4 3.19 −19 0.75 0.67–0.82
LVEF  MOD  A4C (%) 584 54.3 13.1 56.6 13.4 0.75 < 0.001 55.4 −2.31 −4 9.29 17 0.74 0.70–0.78
LV  mass (g) 330 158.9 57.2 163.6 57.3 0.73 < 0.001 161.3 −4.77 −3 41.98 26 0.73 0.64–0.80
A4C  LV GLS (%) 257 −17.5 4.7 −15.8 4.5 0.79 < 0.001 −16.7 −1.70 10 3.01 −18 0.73 0.66–0.79
LAESV  MOD  A2C (mL) 480 60.3 30.9 76.1 39.3 0.83 < 0.001 68.2 −15.86 −23 22.13 32 0.72 0.68–0.76
LAESV  MOD  biplane (mL) 435 60.6 27.4 79.2 38.6 0.89 < 0.001 69.9 −18.64 −27 19.11 27 0.71 0.67–0.76
LAESV  MOD  A4C (mL) 640 61.9 29.6 78.9 42.3 0.84 < 0.001 70.4 −16.91 −24 23.69 34 0.70 0.68–0.76
A3C  LV GLS (%) 255 −17.6 5.3 −15.7 4.3 0.73 < 0.001 −16.7 −1.86 11 3.65 −22 0.65 0.58–0.73
IVSd  (mm) 661 9.8 2.4 10.0 3.2 0.64 < 0.001 9.9 −0.23 −2 2.49 25 0.61 0.47–0.74
TR  Vmax (m/s) 496 2.6 0.7 2.7 0.6 0.62 < 0.001 2.7 −0.05 −2 0.56 21 0.61 0.47–0.73
LVEF  MOD  A2C (%) 531 55.3 12.4 56.1 15.8 0.61 < 0.001 55.7 −0.81 −1 12.75 23 0.60 0.55–0.64
LVPWd  (mm)  636 9.2 1.9 8.6 2.2 0.44 < 0.001 8.9 0.61 7 2.17 24 0.41 0.33–0.51
DecT  (ms) 562 208.2 38.3 212.2 67.3 0.40 < 0.001 210.2 −4.03 −2 62.56 30 0.35 0.26–0.43
Mean  518 – – – – 0.82 < 0.001 46.8 −4.2 −4 11.4 15 0.78 –

A2C LV GLS: apical-2-chamber view left ventricular global longitudinal strain; A3C LV GLS: apical-3-chamber view left ventricular global longitudinal strain; A4C LV GLS: apical-4-chamber view left ventricular global longitudinal
strain;  AI: artificial intelligence; AoV Vmax: aortic valve transvalvular maximal velocity; AoV Vmean: aortic valve transvalvular mean velocity; AoV VTI: aortic valve transvalvular velocity time integral; CI: confidence interval; Dec
T:  deceleration time of the E wave; diff: difference; H: human; ICC: intraclass correlation coefficient; IVSd: interventricular septum thickness in diastole; LAESV MOD  A2C: left atrium end-systolic volume modified apical-2-chamber
view;  LAESV MOD A4C: left atrium end-systolic volume modified apical-4-chamber view; LAESV MOD  biplane: left atrium end-systolic volume modified biplane; LV GLS: left ventricular global longitudinal strain; LV mass: left
ventricular mass; LVEDV MOD A2C: left ventricular end-diastolic volume modified Simpson apical-2-chamber view; LVEDV MOD  A4C: left ventricular end-diastolic volume modified Simpson apical-4-chamber view; LVEDV MOD
biplane:  left ventricular end-diastolic volume modified Simpson biplane; LVEF MOD  A2C: left ventricular ejection fraction modified Simpson apical-2-chamber view; LVEF MOD  A4C: left ventricular ejection fraction modified
Simpson apical-4-chamber view; LVEF MOD  biplane: left ventricular ejection fraction modified Simpson biplane; LVESV MOD A2C: left ventricular end-systolic volume modified Simpson apical-2-chamber view; LVESV MOD
A4C:  left ventricular end-systolic volume modified Simpson apical-4-chamber view; LVESV MOD  biplane: left ventricular end-systolic volume modified Simpson biplane; LVIDd: left ventricular internal diastolic diameter; LVOT
Vmax:  left ventricular outflow tract maximal velocity; LVOT Vmean: left ventricular outflow tract mean velocity; LVOT VTI: left ventricular outflow tract velocity time integral; LVPWd: left ventricular posterior wall diameter;
MV-A:  mitral valve A wave velocity; MV-E: mitral valve E wave velocity; RV s’: right ventricular systolic velocity; SD: standard deviation; TR Vmax: tricuspid regurgitation maximal velocity.

a “Human” refers to measurements made by human operators in real clinical situations, thus integrating all operator categories (experts, residents and nurses). Our goal was to reflect current clinical practice, without favouring
any  specific category. Moreover, specific analyses by operator category (Table 2 in the manuscript) were carried out to provide additional nuance.
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Fig. 1. Correlation and Bland-Altman plots for a representative measurement pane
C.  Mitral A wave. D. Mitral E wave. E. RV S’ wave. F. Tricuspid regurgitation Vmax. G
intelligence; LVOT: left ventricular outflow tract; RV: right ventricle; VTI: velocity t

These results illustrate AI’s ability to be safe and similar to human
quantification of important thresholds.

4.2.3. Subgroup analysis
A comparison between AI and human measurements was per-

formed for the three skill levels. The analysis found that agreement
varied with operator experience (Table 2). Nurses showed mod-
erate agreement for most parameters (ICC: 0.72) compared to an
ICC of 0.79 for experts. For example, LVEF had an ICC of 0.58 (95%
CI: 0.27–0.78) for nurses, indicating reasonable agreement but con-

siderable variability, versus an ICC of 0.84 (95% CI: 0.79–0.86) for
experts. Similar discrepancies were observed for LV end-diastolic
volume, interventricular septum thickness in diastole, LV mass
and GLS. However, for simple measurements like Doppler flow

a
w
(
m

5

parisons between AI and echocardiographers, featuring A. The aortic VTI. B. LVOT.
al longitudinal strain. H. Biplane Simpson’s method ejection fraction. AI: artificial
tegral.

easurements (mitral valve E wave velocity, mitral valve A wave
elocity, right ventricle s’, LVOT VTI, aortic valve transvalvular
max, aortic valve VTI), ICC values were comparable. Low differ-
nces were observed for all measurements between experts and
esidents (mean ICC: 0.78 versus 0.79), even though more marked
ifferences were observed for sensitive parameters such as LVEF
residents: ICC: 0.79, 95% CI: 0.73–0.84 vs. experts: ICC: 0.84, 95%
I: 0.79–0.86).

Patient age-based analysis highlighted that the agreement
etween AI and human measurements was  generally good in all

ge groups, with slight deviations in older patients. LVEF values
ere consistent: 55.8 ± 12.1% for AI and 55.7 ± 10.7% for humans

r = 0.98; P < 0.001). In patients older than 75 years, some Doppler
easurements such as LVOT Vmax displayed a decrease in con-
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Table 2
Results of skill subgroup comparison analysis between AI and humans (H) integrating Student’s t-test (P-value), correlation (Pearson), Bland & Altman data (mean differences, SD differences) and ICCs. Three different levels of
echocardiographers were compared: nurses, residents and experts.

n AI mean AI SD H mean H SD P Pearson R Pearson P AI/H mean AI/H mean diff AI/H mean diff (%) AI/H SD diff AI/H SD diff (%) ICC 95% CI

LVEF MOD  biplane (%)
Nurses 21 58.1 8.4 63.1 7.4 0.05 0.61 < 0.001 60.6 −5.00 −8 6.90 11 0.58 0.27–0.78
Residents  168 53.8 12.7 57.5 13.9 0.01 0.83 < 0.001 55.6 −3.65 −7 7.90 14 0.79 0.73–0.84
Experts  265 54.5 11.8 54.3 12.3 0.85 0.84 < 0.001 54.4 0.19 0 6.87 13 0.84 0.79–0.86

LVEDV  MOD  biplane (mL)
Nurses 21 88.8 20.5 109.3 23.1 0.00 0.66 < 0.001 99.1 −20.50 −21 17.78 18 0.64 0.36–0.81
Residents  168 99.4 43.3 113.2 56.3 0.01 0.94 < 0.001 106.3 −13.82 −13 21.40 20 0.87 0.83–0.89
Experts  265 102.6 40.3 119.8 48.9 0.00 0.93 < 0.001 111.2 −17.14 −15 18.26 16 0.84 0.81–0.88

LVESV  MOD  biplane (mL)
Nurses 21 37.5 11.6 40.4 11.5 0.41 0.78 < 0.001 38.9 −2.99 −8 7.40 19 0.88 0.76–0.94
Residents  168 49.4 36.3 53.5 46.6 0.37 0.96 < 0.001 51.4 −4.13 −8 15.89 31 0.90 0.89–0.94
Experts  265 49.4 31.9 58.7 39.9 0.00 0.96 < 0.001 54.1 −9.28 −17 13.25 25 0.90 0.88–0.92

IVSd  (mm)
Nurses 23 9.5 1.9 8.4 1.9 0.06 0.33 < 0.001 8.9 1.05 12 2.12 24 0.37 0.03–0.64
Residents  228 9.8 2.4 10.1 2.5 0.15 0.76 < 0.001 9.9 −0.32 −3 1.66 17 0.75 0.69–0.80
Experts  397 9.8 2.5 10.0 3.6 0.28 0.61 < 0.001 9.9 −0.24 −2 2.88 29 0.77 0.72–0.82

LVIDd  (mm)
Nurses 26 46.0 8.8 45.8 7.0 0.94 0.88 < 0.001 45.9 0.16 0 4.22 9 0.84 0.70–0.91
Residents  221 48.0 9.4 49.0 9.0 0.25 0.87 < 0.001 48.5 −1.02 −2 4.63 10 0.80 0.73–0.87
Experts  399 48.3 8.9 51.0 8.9 0.00 0.82 < 0.001 49.7 −2.70 −5 5.34 11 0.87 0.83–0.90

LVPWd  (mm)
Nurses 24 9.5 1.6 8.0 2.0 0.01 0.60 < 0.001 8.8 1.50 17 1.59 18 0.38 0.04–0.64
Residents  217 9.4 2.0 8.7 2.1 0.00 0.52 < 0.001 9.1 0.67 7 1.99 22 0.40 0.29–0.51
Experts  382 9.1 1.9 8.6 2.3 0.00 0.40 < 0.001 8.9 0.55 6 2.30 26 0.48 0.37–0.58

LV  mass (g)
Nurses 19 153.9 83.9 116.0 34.2 0.08 0.60 < 0.001 135.0 37.92 28 67.30 50 0.29 −0.19 to 0.66
Residents 66 148.6 48.1 153.4 52.4 0.59 0.74 < 0.001 151.0 −4.75 −3 36.51 24 0.73 0.59–0.82
Experts  244 162.1 57.1 170.2 58.2 0.12 0.77 < 0.001 166.2 −8.10 −5 38.96 23 0.77 0.70–0.82

MV-E  (cm/s)
Nurses 4 84.0 3.9 78.3 7.8 0.24 0.80 < 0.001 81.1 5.68 7 4.53 6 0.92 0.76–0.98
Residents  152 79.3 24.5 80.5 25.4 0.66 0.98 < 0.001 79.9 −1.25 −2 5.63 7 0.97 0.96–0.98
Experts  142 80.8 27.5 80.0 27.5 0.81 0.97 < 0.001 80.4 0.78 1 7.21 9 0.97 0.95–0.98

MV-A  (cm/s)
Nurses 3 97.2 45.3 97.6 47.8 0.99 1.00 < 0.001 97.4 −0.40 0 2.02 2 0.98 0.93–0.99
Residents  136 74.2 27.2 74.0 27.6 0.95 0.96 < 0.001 74.1 0.19 0 7.84 11 0.96 0.94–0.97
Experts  129 75.3 23.4 74.2 24.7 0.69 0.96 < 0.001 74.7 1.19 2 6.51 9 0.96 0.94–0.97

DecT  (ms)
Nurses 22 196.8 38.1 192.8 50.2 0.77 0.46 < 0.001 194.8 4.02 2 45.89 24 0.43 0.05–0.69
Residents  176 208.6 38.8 203.5 61.9 0.36 0.50 < 0.001 206.0 5.10 2 54.07 26 0.36 0.30–0.41
Experts  354 208.9 38.3 217.9 69.6 0.03 0.36 < 0.001 213.4 −9.07 −4 66.05 31 0.44 0.32–0.56

LAESV  MOD  biplane (mL)
Nurses 23 65.8 22.5 72.8 26.9 0.34 0.90 < 0.001 69.3 −7.02 −10 11.52 17 0.76 0.55–0.88
Residents  165 62.0 26.2 79.3 33.1 0.00 0.89 < 0.001 70.6 −17.29 −24 15.33 22 0.72 0.64–0.79
Experts  236 59.1 28.7 79.6 43.2 0.00 0.89 < 0.001 69.3 −20.46 −30 21.70 31 0.69 0.62–0.75

RV  s’ (cm/s)
Nurses 26 11.2 1.8 12.1 2.0 0.10 0.87 < 0.001 11.6 −0.88 −8 0.96 8 0.88 0.78–0.94
Residents  209 11.5 3.0 12.3 3.1 0.01 0.95 < 0.001 11.9 −0.78 −7 0.94 8 0.92 0.90–0.94
Experts  416 11.8 3.2 12.3 3.1 0.02 0.91 < 0.001 12.1 −0.53 −4 1.32 11 0.90 0.88–0.92

LVOT  Vmax (m/s)
Nurses 27 1.0 0.2 1.0 0.2 0.94 0.97 < 0.001 1.0 0.00 0 0.05 5 0.96 0.92–0.98
Residents  246 1.1 0.2 1.0 0.2 0.00 0.81 < 0.001 1.0 0.06 6 0.14 13 0.76 0.70–0.81
Experts  491 1.0 0.2 1.0 0.2 0.01 0.91 < 0.001 1.0 0.03 3 0.09 9 0.89 0.88–0.91
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Table 2
(Continued)

n AI mean AI SD H mean H SD P Pearson R Pearson P AI/H mean AI/H mean diff AI/H mean diff (%) AI/H SD diff AI/H SD diff (%) ICC 95% CI

LVOT VTI (cm)
Nurses 27 20.2 3.9 19.6 3.6 0.57 0.94 < 0.001 19.9 0.58 3 1.26 6 0.91 0.84–0.95
Residents  246 21.6 6.4 20.2 5.1 0.00 0.71 < 0.001 20.9 1.49 7 4.53 22 0.67 0.59–0.63
Experts  491 21.8 5.1 21.0 4.7 0.01 0.89 < 0.001 21.4 0.81 4 2.31 11 0.87 0.85–0.89

AoV  Vmax (m/s)
Nurses 26 1.3 0.6 1.3 0.6 0.91 0.99 < 0.001 1.3 0.02 1 0.09 7 0.99 0.98–0.99
Residents  191 1.6 0.6 1.6 0.7 0.39 0.98 < 0.001 1.6 −0.06 −4 0.14 9 0.97 0.96–0.98
Experts  370 1.7 0.8 1.7 0.8 0.56 0.95 < 0.001 1.7 −0.03 −2 0.23 14 0.95 0.94–0.96

AoV  VTI (cm)
Nurses 26 25.2 13.4 26.0 13.6 0.83 0.99 < 0.001 25.6 −0.80 −3 1.67 7 0.99 0.98–0.99
Residents  191 30.7 14.1 32.7 15.4 0.19 0.97 < 0.001 31.7 −1.98 −6 3.58 11 0.96 0.95–0.97
Experts  368 34.5 17.7 36.7 18.0 0.11 0.97 < 0.001 35.6 −2.13 −6 4.69 13 0.95 0.95–0.97

TR  Vmax (m/s)
Nurses 17 2.3 0.3 2.3 0.3 0.79 0.81 < 0.001 2.3 −0.03 −1 0.19 8 0.59 0.51–0.66
Residents  166 2.6 0.7 2.7 0.5 0.54 0.65 < 0.001 2.7 −0.04 −1 0.50 19 0.62 0.51–0.70
Experts  305 2.7 0.7 2.7 0.6 0.34 0.59 < 0.001 2.7 −0.05 −2 0.61 23 0.78 0.53–0.90

LV  GLS (%)
Nurses 18 −17.9 4.0 −17.0 3.6 0.46 0.73 < 0.001 −17.5 −0.96 5 2.78 –16 0.66 0.36–0.84
Residents  87 −16.4 4.5 −15.1 4.3 0.06 0.88 < 0.001 −15.8 −1.28 8 2.11 –13 0.84 0.77–0.89
Experts  126 −17.6 4.5 −16.1 4.3 0.01 0.87 < 0.001 −16.8 −1.52 9 2.18 –13 0.82 0.75–0.87

A4C  LV GLS (%)
Nurses 20 −17.9 3.6 −16.9 4.2 0.43 0.77 < 0.001 −17.4 −0.98 6 2.62 –15 0.83 0.66–0.92
Residents  92 −16.8 5.0 −15.2 4.4 0.03 0.79 < 0.001 −16.0 −1.55 10 3.08 –19 0.74 0.63–0.82
Experts  138 −18.0 4.8 −16.1 4.6 0.00 0.79 < 0.001 −17.0 −1.93 11 3.02 –18 0.70 0.61–0.78

A2C  LV GLS (%)
Nurses 20 −18.0 5.6 −16.8 3.9 0.46 0.47 < 0.001 −17.4 −1.14 7 5.01 –29 0.41 0.02–0.69
Residents  90 −15.9 4.6 −15.5 4.5 0.59 0.85 < 0.001 −15.7 −0.37 2 2.46 –16 0.85 0.78–0.90
Experts  140 −17.2 4.6 −16.4 4.5 0.15 0.74 < 0.001 −16.8 −0.78 5 3.27 –19 0.74 0.61–0.78

A3C  LV GLS (%)
Nurses 21 −18.2 4.6 −17.0 2.9 0.31 0.55 < 0.001 −17.6 −1.21 7 3.74 –21 0.45 0.09–0.71
Residents  89 −16.7 5.3 −14.9 4.5 0.01 0.72 < 0.001 −15.8 −1.82 12 3.73 –24 0.66 0.52–0.76
Experts  138 −18.2 5.4 −16.1 4.3 0.00 0.75 < 0.001 −17.1 −2.03 12 3.60 –21 0.66 0.55–0.74

LVEF  MOD  A4C (%)
Nurses 24 57.2 8.4 63.8 9.2 0.01 0.49 < 0.001 60.5 −6.64 −11 8.77 14 0.37 0.04–0.63
Residents  191 53.3 14.1 57.9 14.3 0.00 0.78 < 0.001 55.6 −4.61 −8 9.39 17 0.73 0.66–0.79
Experts  354 54.5 12.9 55.2 13.0 0.45 0.76 < 0.001 54.8 −0.73 −1 8.87 16 0.76 0.71–0.80

LVEF  MOD  A2C (%)
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Table 2
(Continued)

n AI mean AI SD H mean H SD P Pearson R Pearson P AI/H mean AI/H mean diff AI/H mean diff (%) AI/H SD diff AI/H SD diff (%) ICC 95% CI

Nurses 23 58.6 9.5 61.8 9.9 0.28 0.52 < 0.001 60.2 −3.16 −5 9.27 15 0.52 0.32–0.71
Residents  187 54.3 13.2 57.2 14.9 0.05 0.73 < 0.001 55.8 −2.90 −5 10.47 19 0.70 0.62–0.77
Experts  308 55.4 12.2 54.8 16.7 0.59 0.56 < 0.001 55.1 0.63 1 14.18 26 0.53 0.45–0.61

LVEDV  MOD  A4C (mL)
Nurses 24 97.2 24.4 120.3 35.9 0.01 0.65 < 0.001 108.8 −23.07 −21 26.83 25 0.57 0.28–0.76
Residents  192 101.4 44.1 112.0 55.2 0.04 0.90 < 0.001 106.7 −10.63 −10 24.19 23 0.86 0.82–0.89
Experts  354 106.3 42.9 119.7 52.0 0.00 0.91 < 0.001 113.0 −13.43 −12 21.71 19 0.86 0.83–0.88

LVEDV  MOD  A2C (mL)
Nurses 23 76.7 21.3 90.5 21.2 0.03 0.80 < 0.001 83.6 −13.75 −16 13.16 16 0.79 0.60–0.89
Residents  187 95.5 43.4 107.3 55.5 0.02 0.89 < 0.001 101.4 −11.83 −12 25.52 25 0.84 0.79–0.88
Experts  308 97.9 42.8 111.1 47.9 0.00 0.88 < 0.001 104.5 −13.29 −13 22.53 22 0.83 0.80–0.87

LVESV  MOD  A4C (mL)
Nurses 24 42.1 14.3 43.1 15.2 0.81 0.73 < 0.001 42.6 −1.02 −2 10.53 25 0.82 0.67–0.91
Residents  191 50.5 37.1 51.3 44.0 0.85 0.94 < 0.001 50.9 −0.77 −2 15.42 30 0.93 0.90–0.95
Experts  354 51.2 34.6 57.4 40.8 0.03 0.95 < 0.001 54.3 −6.20 −11 13.34 25 0.92 0.91–0.94

LVESV  MOD  A2C (mL)
Nurses 23 31.8 11.1 34.1 9.7 0.44 0.76 < 0.001 32.9 −2.37 −7 7.19 22 0.89 0.78–0.94
Residents  187 46.7 34.9 51.0 45.2 0.30 0.92 < 0.001 48.9 −4.36 −9 18.63 38 0.89 0.85–0.91
Experts  308 46.1 31.9 53.5 38.2 0.01 0.92 < 0.001 49.8 −7.44 −15 14.96 30 0.89 0.86–0.91

LVOT  Vmean (m/s)
Nurses 27 0.7 0.1 0.7 0.1 0.13 0.91 < 0.001 0.7 −0.05 −8 0.06 9 0.88 0.78–0.94
Residents  246 0.7 0.2 0.7 0.1 0.08 0.82 < 0.001 0.7 0.02 3 0.09 13 0.80 0.75–0.84
Experts  491 0.7 0.1 0.7 0.1 0.91 0.88 < 0.001 0.7 0.00 0 0.07 10 0.88 0.86–0.90

LAESV  MOD  A4C (mL)
Nurses 26 64.5 28.1 69.1 28.3 0.56 0.90 < 0.001 66.8 −4.63 −7 12.55 19 0.82 0.67–0.91
Residents  220 61.7 26.7 76.5 36.9 0.00 0.76 < 0.001 69.1 −14.78 −21 23.76 34 0.64 0.55–0.71
Experts  382 62.2 31.5 81.0 46.0 0.00 0.87 < 0.001 71.6 −18.83 −26 24.08 34 0.71 0.66–0.76

LAESV  MOD  A2C (mL)
Nurses 24 66.0 21.7 68.0 26.8 0.77 0.77 < 0.001 67.0 −2.06 −3 16.74 25 0.67 0.42–0.82
Residents  177 63.5 30.8 79.3 36.9 0.00 0.84 < 0.001 71.4 −15.77 −22 19.85 28 0.73 0.66–0.80
Experts  265 57.5 31.4 74.6 41.8 0.00 0.82 < 0.001 66.1 −17.06 −26 23.94 36 0.71 0.64–0.76

AoV  Vmean (m/s)
Nurses 26 0.9 0.4 1.0 0.4 0.75 0.99 < 0.001 0.9 −0.04 −4 0.06 6 0.99 0.98–0.99
Residents  191 1.1 0.4 1.2 0.5 0.15 0.98 < 0.001 1.1 −0.07 −6 0.11 9 0.96 0.95–0.97
Experts  370 1.2 0.6 1.2 0.6 0.18 0.96 < 0.001 1.2 −0.06 −5 0.17 14 0.95 0.94–0.96

A2C LV GLS: apical-2-chamber view left ventricular global longitudinal strain; A3C LV GLS: apical-3-chamber view left ventricular global longitudinal strain; A4C LV GLS: apical-4-chamber view left ventricular global longitudinal
strain;  AI: artificial intelligence; AoV Vmax: aortic valve transvalvular maximal velocity; AoV Vmean: aortic valve transvalvular mean velocity; AoV VTI: aortic valve transvalvular velocity time integral; CI: confidence interval; Dec
T:  deceleration time of the E wave; diff: difference; H: human; ICC: intraclass correlation coefficient; IVSd: interventricular septum thickness in diastole; LAESV MOD  A2C: left atrium end-systolic volume modified apical-2-chamber
view;  LAESV MOD A4C: left atrium end-systolic volume modified apical-4-chamber view; LAESV MOD  biplane: left atrium end-systolic volume modified biplane; LV GLS: left ventricular global longitudinal strain; LV mass: left
ventricular mass; LVEDV MOD A2C: left ventricular end-diastolic volume modified Simpson apical-2-chamber view; LVEDV MOD  A4C: left ventricular end-diastolic volume modified Simpson apical-4-chamber view; LVEDV MOD
biplane:  left ventricular end-diastolic volume modified Simpson biplane; LVEF MOD  A2C: left ventricular ejection fraction modified Simpson apical-2-chamber view; LVEF MOD  A4C: left ventricular ejection fraction modified
Simpson apical-4-chamber view; LVEF MOD  biplane: left ventricular ejection fraction modified Simpson biplane; LVESV MOD A2C: left ventricular end-systolic volume modified Simpson apical-2-chamber view; LVESV MOD
A4C:  left ventricular end-systolic volume modified Simpson apical-4-chamber view; LVESV MOD  biplane: left ventricular end-systolic volume modified Simpson biplane; LVIDd: left ventricular internal diastolic diameter; LVOT
Vmax:  left ventricular outflow tract maximal velocity; LVOT Vmean: left ventricular outflow tract mean velocity; LVOT VTI: left ventricular outflow tract velocity time integral; LVPWd: left ventricular posterior wall diameter;
MV-A:  mitral valve A wave velocity; MV-E: mitral valve E wave velocity; RV s’: right ventricular systolic velocity; SD: standard deviation; TR Vmax: tricuspid regurgitation maximal velocity.
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cordance, probably due to the usual poor echogenicity of older
patients. However, most key parameters retained high ICC values
(> 0.8).

Weight-based analysis showed that agreement was generally
high in all weight groups, with variability increasing for patients
with extreme weight. In the low-weight group, the LVEF displayed
high agreement (ICC: 0.85), while in the high-weight group, con-
cordance remained high (ICC: 0.77), but with higher variability.
Some measurements, such as wall thickness and flow velocities,
presented lower agreement in the extreme weight categories,
suggesting that weight may  influence the accuracy of certain
parameters.

5. Discussion

This study investigated the integration capability of an AI system
to automate measurements in a high-volume echocardiography
department and concordance of the measurements generated by
AI in ‘real-world’ conditions.

The main findings of our study were: (1) the feasibility analy-
sis was positive, with a technical implementation time of < 4 weeks
from receiving the AI server to capturing the first cases of echocar-
diographic modalities; (2) measurement comparison between AI
and operators over the following 2 months (894 echocardiogram
examinations) showed that overall agreement was high for most
important parameters, but that disparities were present, thus invit-
ing cautious clinical interpretability (of note is that in overweight
and older patients, the agreement was indeed lower) and (3) some
differences were observed depending on echocardiographer expe-
rience level: experts presented a higher agreement than residents
and nurses.

5.1. Implementation feasibility

The successful integration of an AI system into an echocardio-
graphy department is associated with several critical challenges.
The most important of these is compliance with data security
and privacy regulations, particularly the GDPR, which governs the
handling of sensitive patient data. The AI system must function
within the facility’s secure environment without transmitting data
to external servers. Therefore, the AI solution used in the study was
implemented internally in the IT department of the Bordeaux Uni-
versity Hospital, in compliance with strict security protocols. The
system was connected to the hospital’s internal network as a web
IP server, so that no external virtual private network access was
required. System integration into the existing echocardiography
equipment was completed in < 4 weeks, underlining the simplicity
of the technical setup. This rapid integration enabled seamless data
flow between the conventional PACS (ComPACS) and the AI pro-
cessing station, facilitating real-time analysis while ensuring full
compliance with security and privacy standards. Moreover, this AI
solution is vendor neutral and therefore broadly scalable.

5.2. Measurement concordance

The AI algorithm implemented by Us2.ai has been previously
validated. Numerous publications have already demonstrated the
reliability of AI in identifying echocardiographic views and per-

forming automated measurements. For example, Tromp et al.
[13] confirmed AI’s ability to accurately recognize echocardio-
graphic planes and extract important measurements. AI automated
echocardiographic measurements [14] have also been validated,
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ncluding accurate calculation of parameters such as EF [15–17]
nd GLS [18]. The ability of AI to continuously learn from large
atasets has been shown to improve accuracy and minimize human
rror in measurement tasks. Moreover, Us2.ai’s real-time measure-
ents in < 2 minutes undoubtedly add great time value in terms of
orkflow integration.

The main objective of this study was to assess the agreement
etween human and AI measurements in a clinical setting. A wide
ser range with different expertise levels participated in this study,
rom nurses and residents to experienced echocardiographers, all
orking in the echocardiography department. Overall, the con-

ordance analysis reported different statistical parameters, which
howed heterogeneity in the results depending on measurements.
orrelations were very strong, with a Pearson coefficient > 0.80 for
ost parameters. Nevertheless, it is the Bland-Altman and ICC anal-

ses that provided the most authentic concordance picture. On
verage, differences between AI and human measurements were
round 4%, with a standard deviation of 15%. In addition, the ICC
xceeded 0.80 in 50% of the measurements, indicating true agree-
ent between AI- and human-generated data, especially for critical

arameters such as EF and strain, which were comparable to values
btained in validated studies.

The next question arising from this study could be: what is the
rue ‘gold standard’ for measurement – AI or human? [19]. Given
he consistency and precision achieved by AI in various studies,
I may soon replace the human operator as the gold standard for
chocardiographic measurements, at least before a full diagnosis is
ade [20,21].
In this context, AI use in routine practice increases measurement

nd improves both the result precision and echocardiography’s
verall diagnostic value. This progress will ultimately increase the
xpertise and diagnostic confidence resulting from these examina-
ions and makes AI an important tool in modern cardiology [22].

.3. Concordance results: subgroup analysis

The differences observed between qualification groups (nurses,
esidents and experts) are particularly interesting, even though
ase numbers were not homogeneous. When isolating the mea-
urement comparisons of the experienced group, all statistical
arameters increased significantly for the mean ICC and espe-
ially for parameters sensitive to reproducibility, such as EF, which
ncreased from 0.58 for nurses to 0.84 for experts. This point is
articularly noteworthy as it shows that concordance, and there-
ore reliability, depend on the user rather than AI. This supports
he hypothesis that AI could become the gold standard, especially
or operator-dependent parameters (EF, structural areas, volumes
nd tricuspid regurgitation) compared with simpler and more
eproducible measurements (Vmax E and A, subaortic and aortic
elocities, and the same for VTI).

Subgroup analyses based on patient age and weight were per-
ormed to test the hypothesis of the influence of window quality on
oncordance. The acoustic quality of the windows was indeed indi-
ectly estimated from demographic characteristics (age, weight),
n the absence of specific subjective qualitative assessment. No sig-
ificant differences were found in the mean statistical assessment
arameters. However, a parameter closely related to window qual-

ty, EF, showed an ICC decrease with age (from 0.97 to 0.73), as

or parameters related to wall measurements. Similarly, extreme
eight categories were associated with poorer concordance for the

ame measurements. While weight was  selected as the primary
ariable due to its availability in our clinical database, body mass
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index may  be a more accurate indicator of body composition and
its impact on image quality. Future studies should consider incor-
porating body mass index to further refine the understanding of AI
performance across different patient morphologies. Finally, due to
the small case number in the nurse subgroup, it was unfortunately
not possible to assess the relationship between ultrasound window
quality and operator skill, although such a relationship is likely to
exist.

One of the major potential benefits of AI in echocardiography
is measurement standardization, thereby reducing inter-operator
variability. Our results showed that concordance was higher for
echocardiograms performed by experts than for those performed
by residents and nurses. This may  indicate that AI performs closer
to expert-level standards, supporting the hypothesis that AI could
improve reproducibility of measurements, particularly for less
experienced operators. Future research should investigate the pre-
cise role of AI in minimizing inter-operator variability and its
potential to harmonize echocardiographic assessment across dif-
ferent levels of expertise.

5.4. Study limitations

While this study emphasized a high agreement level between
AI and human measurements, it has some limitations. Operators
had varying experience levels, ranging from highly experienced
seniors to residents in their first echocardiography training year,
and nurses working under a cooperative protocol with measure-
ments validated by a senior. Although this ensured measurement
accuracy, the smaller number of examinations performed by nurses
may  limit the statistical power of subgroup analyses. This variabil-
ity may  have influenced the results, especially in the case of more
complex measurements. However, as Us2.ai performs well in vari-

ous demographic groups, its consistency could be valuable for less
experienced operators.

The 2-month data collection period may  not have captured
the full range of clinical scenarios. The use of human-generated

c
o
(
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ata as a reference carries the risk of bias, as AI may outperform
uman performance on certain measurements. Although our study
emonstrated high concordance between AI and human measures,
e did not assess the direct impact of AI on clinical decision-
aking, workflow efficiency or patient outcomes. These aspects

re critical for understanding the true clinical value of AI inte-
ration. Therefore, future studies should focus on how AI affects
iagnostic accuracy, decision confidence and patient management.

n addition, longitudinal studies could help determine whether AI
mplementation translates into improved patient outcomes and
treamlined echocardiography workflow.

Finally, this study was  conducted in a scheduled setting, where
ll echocardiograms were scheduled at least 2 months in advance.
he feasibility of AI in emergency echocardiograms, where image
cquisition conditions are less controlled, remains an important
oncern for future investigation. Emergency echocardiograms often
resent additional challenges, including variable image quality,
ime constraints and less optimal patient positioning. Therefore,
uture studies should evaluate AI performance in these settings in
rder to determine its robustness under different clinical condi-
ions.

. Conclusions

This study showed that AI integration in a high-volume echocar-
iography department is feasible and yields a high degree of
greement with human measurements, even for operators with
ifferent experience levels. This broadly scalable AI system proved
o be reliable, especially for standard echocardiographic measure-

ents, and offers the potential to improve diagnostic accuracy.
hile further research is needed to assess the long-term impact
ould play a key role in improving the reliability and efficiency
f echocardiographic examinations in real-world clinical practice
Central Illustration).
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Central Illustration. A total of 894 electrocardiograms were analysed by humans (nurses, residents and experts) and AI. Results showed
d, w
that the agreement between AI and humans was good to very goo

AI: artificial intelligence; ICC: intraclass correlation coefficient.
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