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BACKGROUND Considering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR

severity reporting, an automated tool that could screen patients for clinically significant MR ($ moderate) would

streamline the diagnostic/therapeutic pathways and ultimately improve patient outcomes.

OBJECTIVES The authors aimed to develop and validate a fully automated machine learning (ML)–based echocardi-

ography workflow for grading MR severity.

METHODS ML algorithms were trained on echocardiograms from 2 observational cohorts and validated in patients from

2 additional independent studies. Multiparametric echocardiography core laboratory MR assessment served as ground

truth. The machine was trained to measure 16 MR-related parameters. Multiple ML models were developed to find the

optimal parameters and preferred ML model for MR severity grading.

RESULTS The preferred ML model used 9 parameters. Image analysis was feasible in 99.3% of cases and took 80 � 5

seconds per case. The accuracy for grading MR severity (none to severe) was 0.80, and for significant (moderate or

severe) vs nonsignificant MR was 0.97 with a sensitivity of 0.96 and specificity of 0.98. The model performed similarly in

cases of eccentric and central MR. Patients graded as having severe MR had higher 1-year mortality (adjusted HR: 5.20

[95% CI: 1.24-21.9]; P ¼ 0.025 compared with mild).

CONCLUSIONS An automated multiparametric ML model for grading MR severity is feasible, fast, highly accurate, and

predicts 1-year mortality. Its implementation in clinical practice could improve patient care by facilitating referral to

specialized clinics and access to evidence-based therapies while improving quality and efficiency in the echocardiography

laboratory. (JACC Cardiovasc Imaging. 2025;18:1–12) © 2025 by the American College of Cardiology Foundation.
M itral regurgitation (MR) is the most preva-
lent valvular heart disease in the United
States and the second-most common in

Europe.1-3 As newer technologies become available
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for treating patients with significant MR,4-6 the need
for proper diagnosis becomes increasingly relevant.

Echocardiography is the primary imaging modality
recommended for determining the mechanism and
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ABBR EV I A T I ON S

AND ACRONYMS

A2C = apical 2-chamber

A4C = apical 4-chamber

CWDD = continuous wave

Doppler jet density

LA = left atrial

LV = left ventricular

LVEDV = left ventricle end-

diastolic volume

LVESV = left ventricle end-

systolic volume

LVOT = left ventricular outflow

tract

MR = mitral regurgitation

ML = machine learning

PASP = pulmonary artery

systolic pressure

PLAX = parasternal long-axis

ROI = region of interest

RAR = color Doppler

regurgitant jet area ratio

TTE = transthoracic

echocardiograms

VC = vena contracta width
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severity of MR.2 Given the complex anatomy
and function of the mitral valve (MV) appa-
ratus, grading MR severity is challenging,
requiring a comprehensive examination with
multiple parametric assessments.7 Despite
notable advances in the understanding of the
MV anatomy and function, the integrated
multiparametric approach suggested by cur-
rent guidelines is time-consuming and sub-
ject to significant interobserver variability,8

mainly related to subjective evaluation of
color Doppler and other proposed measure-
ments, which affects proper treatment se-
lection and timing for interventions. Even
newer quantitative measures of MR have
proven to be cumbersome, have slow adop-
tion in the community, and result in high
variability, thus leaving the clinician with
doubt as to the true severity of MR.

Recent studies have demonstrated the
promising role of artificial intelligence (AI)
and machine learning (ML) in cardiac imag-
ing.9,10 In cardiac ultrasound, new AI tech-
nologies are being developed to help in
image acquisition,11 as well as automated
cardiac chamber size and function assessment.12-14

Automated analysis makes the reporting of an echo-
cardiogram significantly more efficient while
improving the reproducibility of measurements such
as left ventricular (LV) volumes and ejection fraction
(EF).12,15-18 AI’s role can expand to diagnosing other
cardiovascular conditions, such as valvular heart
disease.

Categorizing MR severity is essential because sig-
nificant MR is associated with high morbidity and
mortality.19,20 An automated tool that could screen
patients for significant MR would improve timely
disease detection, make this diagnosis more reliable,
and streamline the diagnostic and therapeutic path-
ways, ultimately improving patient outcomes.

We, therefore, developed a fully automated ML-
based workflow to quantify parameters of MR
severity grading. Here, we describe the development
and validation of algorithms that aim to grade MR
severity accurately by using transthoracic echocar-
diograms (TTE) from patients with heart failure and
various degrees of MR severity included in multi-
center clinical studies.

METHODS

To evaluate MR severity, we developed automated
ML-based algorithms to measure 16 American
Society of Echocardiography (ASE)–recommended
echocardiographic MR-related parameters within 3
categories (Supplemental Table 1)7: MR-specific,
chamber size, and hemodynamics parameters. The
MR-specific quantitative parameters were as follows:
MR jet vena contracta width (VC) measured in the
parasternal long-axis (PLAX), apical 2-chamber (A2C),
and apical 4-chamber (A4C) views, color Doppler
regurgitant jet area ratio (RAR) measured in the A4C
and A2C views, and the continuous wave Doppler jet
density (CWDD). Image analysis algorithms were
developed (study phase 1, measurements develop-
ment stage), and later MR severity grading models
were created (study phase 2, measurements valida-
tion and severity models development stage) in in-
dependent TTE data sets.

STUDY COHORTS. For phase 1, randomly selected
TTEs of patients with any degree of MR enrolled in
the previously described MacKay and ATTRaCT
(Asian Network for Translational Research and Car-
diovascular Trials) cohorts were used to develop ML
algorithms for DICOM (digital imaging and commu-
nications in medicine) image analysis.12 In brief, the
ATTRaCT data set contains data from 11 countries
involved in the Asian Sudden Cardiac Death in
Heart Failure registry (heart failure [HF] with pre-
served or reduced left ventricular ejection fraction
[LVEF]) and Mackay contains real-world patients
from a large Hospital in Taipei, Taiwan. The phase 1
development data set was split into independent,
randomly selected training and testing sets (90:10
ratio). The number of images or videos used to
develop each of the algorithms is included in Sup-
plemental Table 2.

For phase 2, a total of 438 patients randomly
selected from 2 multicenter clinical studies (PROMIS-
HFpEF [PRevalence Of MIcrovascular dySfunction in
Heart Failure with Preserved Ejection Fraction] and
COAPT [Cardiovascular Outcomes Assessment of the
MitraClip Percutaneous Therapy for Heart Failure
Patients With Functional Mitral Regurgitation]) were
included. PROMIS-HFpEF included patients with
HFpEF regardless of the presence, degree, or etiology
of MR, whereas COAPT included patients with HF,
LVEF 20%-50%, and moderate-to-severe or severe
secondary MR.5,21 The COAPT group included a sub-
group of trial screen failures with moderate MR. As a
result, the validation cohort included patients with
various degrees of MR and LVEF. The phase 2 cohort
was split into 2 independent subcohorts: the mea-
surements external validation group (70%; n ¼ 305),
which was also used to develop the multiparametric
models; and the independent testing group (30%;
n ¼ 133), which was used to test the performance of
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FIGURE 1 Study Workflow for Algorithms Development (Phase 1) and Severity Grading (Phase 2) Validation Phases
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The multiparametric MR severity is calculated using a series of ML-derived models that include the 3 MR-related echocardiography categories: 1) MR-specific

parameters: RAR, VC, and CWDD; 2) left-sided heart chamber size parameters; and 3) hemodynamic parameters such as LVOT SV and PASP. Each of these parameters is

calculated considering all available echocardiographic views, all videos and cardiac cycles within each view, and measurements from all frames of each cardiac cycle.

2D ¼ 2-dimensional; A2C ¼ apical 2-chamber; A4C ¼ apical 4-chamber; CD ¼ color Doppler; CW ¼ continuous wave; CWDD ¼ continuous wave Doppler jet density;

IVC ¼ inferior vena cava; LV ¼ left ventricle; LVOT ¼ left ventricular outflow tract; LVEDV ¼ left ventricle end diastolic volume; ML ¼ machine learning; MR ¼ mitral

regurgitation; PASP ¼ pulmonary artery systolic pressure; PLAX ¼ parasternal long-axis; PW ¼ pulse wave Doppler; RA ¼ right atrium; RAR ¼ regurgitation area ratio;

RV ¼ regurgitant volume; SV ¼ stroke volume; TRV ¼ tricuspid regurgitation velocity; VC ¼ vena contracta; VTI ¼ velocity time integral.
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the single parameters and multiparametric models in
grading MR severity.

Clinical studies were approved by the institutional
review board/ethics committees and patient consent
was obtained as appropriate.

PHASE 1: MEASUREMENT ALGORITHMS DEVELOP-

MENT, IMAGE ANALYSIS TRAINING, AND TESTING.

Echocardiographic views were classified (Figure 1)
using the previously described automated view clas-
sifier.12 For MR-specific parameters, 3 certified echo-
cardiography experts employed by Us2.ai generated
the region of interest (ROI) (2 experts generated ROI
as training data, 1 reviewed each of them). Training
and test data from ATTrACT were generated to train
MR jet area, VC, and MR CW Doppler waveform
models, selecting only high-quality images. Auto-
matic annotations were created through a convolu-
tional neural network to generate the ROI. Afterward,
these models were used for MR detection in the
Mackay cohort. Experts corrected any inaccurate
detections from AI-generated MR detection, which
were used to further improve the trained models. The
experts subsequently performed manual annotations,
which were used to train the machine in tracing each
parameter’s measurement.

The VC was measured in 3 views (PLAX, A4C, and
A2C). All available cardiac cycles on the views of in-
terest were used. The machine was trained to perform
tracings and measurements for every systolic frame
in the cardiac cycles in all video clips available for
each view and to calculate the median for each clip
(Figure 2). Because multiple clips/cardiac cycles were
available for each view, the median of all of them was
used as the final value for a given view. The VC
parameter was considered separately for each of the
3 views and as a single final VC value (the maximum
of the measurements obtained from each of the 3
views).

For RAR, the MR jet and left atrial areas were
measured in all the available A2C and A4C views with



FIGURE 2 Algorithm Development Process for Each Parameter
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On each video, multiple cardiac cycles may be available. For the MR-specific parameters such as VC, RAR, and CWDD, all frames in a cycle are measured and the largest

(RAR) or median (VC) one is selected, then the median for all cycles in each view is selected (final parameter for each view). Through all PW LVOT VTI images, the

machine chose the highest PW maximum velocity. The best LVOT diameter was defined as the one with the highest annotation probability. For the LVEDV and LVESV,

the echo 2D video with the highest view classification probability was selected, and the final LVEDV/LVESV was calculated from the cycle with the median of all cycles

in the selected video. LVOT SV was calculated using the formula of 3.14 (LVOT diameter/2)2 � LVOT VTI. PASP was calculated through TR peak velocity þ right atrium

pressure assessed using IVC size and collapse. If IVC was not visualized then RA area was used as RAa >18 cm2, RAP ¼ 10 mm Hg, and RA area <18 cm2, and RAP

5 mm Hg. CNN ¼ Convolutional Neural Network; other abbreviations as in Figure 1.
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a color Doppler signal. A similar multiclip/cycle/frame
analysis process was used for each view described
already in this article (Figure 2). The RAR parameter
was considered separately for each of the 2 views and
as a single final RAR value (average of the 2 views).

The density of the MR CW signal, traditionally a
subjective qualitative parameter, was measured as
CWDD, a novel quantitative parameter. CWDD was
analyzed by assigning a numerical value in the gray-
scale to each pixel within the CW waveform. Because
the greyscale can be altered during image acquisition,
CWDD was obtained by normalizing to the brightness
of the entire Doppler image (Supplemental Figure 1).
CWDD values ranged from 0-1 (0 reflecting black,

https://doi.org/10.1016/j.jcmg.2024.06.011


FIGURE 3 Multiple Parameters Used for the Final MR Severity Grading Model
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Multiple images were used for measuring the 9 selected parameters, including multiple videos of A4C views (for VC and RAR), A2C (for VC and RAR), PLAX (for VC),

images with CW of the MR jet (for CWDD), as well as the videos to obtain the non-MR specific measurements (LVEDV, LVOT SV, and PASP). On each video multiple

cardiac cycles may be available. Every systolic frame for each cycle is measured and the largest (RAR) or median (VC) one is selected. The median of all those selected

for each view is the final measurement for the parameter in a given view. Once this process is completed for each view of interest for a given parameter (PLAX, A4C,

and A2C for VC; A4C and A2C for RAR; all MR CW waveforms for CWDD; biplane LVEDV, LVOT SV, and PASP), these single-parameter values are combined in the

preferred multiparametric model (model M7). RAP ¼ right atrial pressure; other abbreviations as in Figure 1.
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1 white, and shades of gray in between). All available
cardiac cycles were used, and the median was
selected as the final CWDD.

For chamber size and hemodynamic parameter
analysis, a segmentation model was used to generate
waveform masks of left ventricular outflow tract
(LVOT) pulse wave Doppler signals and 2 heatmap
regression models were developed to assess the
inferior vena cava and LVOT diameters indepen-
dently. CW tricuspid regurgitation peak velocity, and
left atrial volume, MV peak E velocity, MV peak A
velocity, E/A ratio, left ventricle end-diastolic volume
(LVEDV), left ventricle end-systolic volume (LVESV),
and right atrial area were measured using the models
previously described12,13 (Figure 3). All parameters
were made following the ASE standards.7

PHASE 2: MEASUREMENTS EXTERNAL VALIDATION

AND MR SEVERITY GRADE MODELS DEVELOPMENT.

Once the machine was trained for views selection and
measuring all 16 parameters (phase 1), the measure-
ments were used to grade MR severity by comparing
to the ground truth in the MR severity validation
phase (Figure 1). The echocardiograms were reviewed
by experts in the MedStar Health core laboratory
(ground truth) and graded as none/trace, mild, mod-
erate, or severe (including moderate-to-severe)
through a detailed qualitative and quantitative anal-
ysis following ASE Guidelines.7 Finally, none/trace
and mild were grouped as nonsignificant MR, and
moderate and severe as significant MR. All core lab-
oratory analysis was performed before the automated
algorithms were developed and blinded to any clin-
ical information.

The ML model performance was tested for each of
the single MR-specific parameters (RAR, VC, CWDD
models 1-3, respectively, in Supplemental Table 3)
and various multiparametric models (models 4-7).

MULTIPARAMETRIC MODELS. Various models of
multiparametric analysis were designed and tested
using combinations of the 16 candidate parameters as
model input and MR grade severity as output. The ML

https://doi.org/10.1016/j.jcmg.2024.06.011


FIGURE 4 Accuracy of All Models Developed for MR Severity Grading

92

64

74

80
57 64

56

63

87

M4

M3

M2

M1

M7

M6

M5

Test Accuracy (%) for all Models

87

87
84

97

94

M1: Single parameter ML performance for RAR
M2: Single parameter ML performance for VC
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M4: Output is the median severity grade of the ML 1, 2 and 3
M5: Out put is based on the six MR specific parameters (PLAX VC, A2C VC, and
                             A4C VC, A2C RAR, A4C RAR, CWDD) using ML decision tree model

M6: Output is based on the six MR specific parameters (PLAX VC, A2C VC, and
                             A4C VC, A2C RAR, A4C RAR, CWDD) using the catboost model
M7: Output is based on the nine MR related parameters (PLAX VC, A2C VC, and
                             A4C VC, A2C RAR, A4C RAR, CWDD, LVEDV, LVOT stroke volume, 
                             and PASP using the catboost model

Dark color mean all severity grades classification and light color means significant vs nonsignificant severity classification. Abbreviations as in Figure 1.
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grading and measurement models were created with
Catboost 1.2.2, TensorFlow 2.10.0, and Python 3.9.
Specific descriptions of the 7 models are presented in
Supplemental Table 3. A thorough analysis of the best
parameters within the 3 specified groups was per-
formed to find the optimal parameters from each
group to enhance the overall model effectiveness.

CLINICAL OUTCOMES. One-year clinical outcomes
(HF hospitalization and all-cause mortality) were
collected from the PROMIS and COAPT trials to test
the ML-preferred model’s predictive value.

STATISTICAL ANALYSIS. The multiparametric MR
grading assessment by the core laboratory (none/
trace, mild, moderate, and severe) was considered the
ground truth. The performance (sensitivity, speci-
ficity, and accuracy) of each single and multi-
parametric ML model was calculated. Accuracy, the
overall probability that a patient is correctly classi-
fied, was calculated as:

Accuracy ¼ Sensitivity� Prevalence
þ Specificity� ð1 e PrevalenceÞ

Finally, the association of MR severity grade and 1-
year clinical outcomes was tested using Cox propor-
tional hazards models, adjusting to age and LVEF.
Statistical analysis was done with SAS v9.4.

RESULTS

A total of 438 patients composed the population used
for MR severity models development (phase 2). Basic
demographic and echocardiographic characteristics
are included in Supplemental Tables 4 and 5. The
distribution of LVEDV, LVESV, LVEF, LA volume,
right ventricular fractional area change, pulmonary
artery systolic pressure (PASP), and MR severity (per
core laboratory analysis) was broad, reflecting the
diversity of the overall study population. There were
no significant differences between patients included
in the validation and testing cohorts.

Image analysis was feasible in 99.3% of the echo-
cardiograms. Seven models were developed and
tested; 3 used a single MR-specific parameter, and 4
were multiparametric.

The accuracy of MR severity grading for each MR-
specific single parameter ranged from 0.56-0.64, and
for significant vs nonsignificant MR ranged from
0.84-0.87. Specificities were slightly higher than
sensitivities (Supplemental Table 6).

MR SEVERITY GRADING USING MULTIPARAMETRIC

ANALYSIS. The use of multiple parameters in all
tested ML models improved the MR severity grading
as well as the identification of those with significant
MR when compared with the single-parameter
models. The performance of each of the ML models
is described in Figure 4 and Supplemental Table 6.
After testing multiple combinations through decision
tree and catboost models, the best MR severity
grading results were obtained with the ML catboost
model (M7) using 9 independent selected parameters
(Figure 3). Automated analysis was possible in 95.9%
of cases for A2C/A4C RAR, 90.8% for A4C VC, 86.9%
for A2C VC, 72.2% for PLAX VC, 87.8% for CWDD,
90.6% for PASP, 93.8% for LVEDV, and 89% for LVOT
stroke volume (SV). The overall MR grade by auto-
mated analysis in model M7 was obtained by having
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FIGURE 5 Performance of the Preferred ML Model for Grading All MR Severity and Nonsignificant (None, Trace, Mild) vs Significant (Moderate, Severe) MR in

Validation and Testing Cohorts
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Percentage values in each box refer to percentage of each category as determined by the core laboratory (true label, columns).
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all 9 parameters in 27.1% of cases, at least 7 in 70.6%,
and at least 5 in 85.1%. The mean time for full auto-
mated analysis (from image upload to full severity
reporting) was 80 � 5 seconds. Reproducibility was
tested by running the models thrice in 40 randomly
selected cases, with perfect agreement (0 variability).

Accuracy on the MR severity testing cohort for the
multiparametric models ranged from 0.63-0.80 on
grading severity and 0.87-0.97 on detecting signifi-
cant vs nonsignificant MR.

Results on the performance of the preferred cat-
boost model M7 were similar in the validation and
testing cohorts (Figure 5). This model had an accuracy
for grading MR severity of 0.80, whereas it had a
specificity of 0.98, sensitivity of 0.96, and accuracy of
0.97 for detection of significant MR. The model per-
formed with high accuracy in cases with eccentric and
central MR jets (0.89 and 0.81, respectively)
(Supplemental Figure 2).
ASSOCIATION OF MR SEVERITY AND CLINICAL

OUTCOMES. Outcomes data were available for 351
patients. The 1-year all-cause mortality rate was 8.8%
(n ¼ 31), HF hospitalization was 13.7% (n ¼ 48), and
the rate of the combined endpoint of all-cause death
and HF hospitalization was 18.5% (n ¼ 65).

Based on the MR grading by the preferred
model, death from any cause at 1 year occurred in
2.78% of patients with none or mild, 0% of those
with moderate, and 15.8% of patients with severe
MR. There was a significantly increased risk of
1-year death in those with severe compared with
those with mild MR (HR: 6.44 [95% CI: 2.5-16.8];
P < 0.001), even after adjusting for age and
LVEF (HR: 5.2 [95% CI: 1.24-21.9]; P ¼ 0.025 when
adjusted for LVEF and age by Cox proportional
model). The combined endpoint of death and HF
hospitalization occurred in 5.6%, 15.4%, and 33.5%
of those with mild, moderate, and severe MR,
respectively.

Based on the MR grading by the expert readers
(ground truth) the increased risk of 1-year death for
those graded severe MR was significant based on

https://doi.org/10.1016/j.jcmg.2024.06.011
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univariate analysis (HR: 5.91 [95% CI: 2.26-15.45];
P ¼ 0.0003), but not statistically significant once
adjusted for age and LVEF (HR: 3.66 [95% CI: 0.82-
16.25]; P ¼ 0.088).

DISCUSSION

In the current study, we developed and validated
multiple ML-based algorithms for a novel, fully
automated analysis of echocardiographic images
for grading MR severity through single and multi-
parametric models. We leveraged the strengths of
AI to generate and analyze large data sets in a very
fast time (roughly 80 s) by automatically performing
measurements from multiple cardiac cycles and
multiple echocardiographic views. Our main find-
ings are as follows: 1) the development of CWDD, a
novel ML-based quantitative CW Doppler metric to
grade MR severity, and automated models for
measuring the MR guidelines-recommended pa-
rameters, VC, MR jet area ratio, LVEDV, PASP, and
LVOT SV; 2) the development of several novel ML
models for multiparametric evaluation of MR
severity; 3) proof of high feasibility, efficiency, and
accuracy of the automated ML workflow to classify
the TTE views, detect MR jets, and perform quan-
tification and grading of the MR severity by using
multiple quantitative parameters and multi-
parametric models (Central Illustration); and 4) the
significant association between the ML-predicted
probability of MR severity and clinical outcomes.

During the last decade, the use of ML and AI in
cardiovascular medicine has grown exponentially. In
cardiac imaging and echocardiography, in particular,
the application of algorithms to analyze big data and
the need to improve the workflow, efficiency, and
accuracy of the echocardiographic readings have been
of particular interest. Several large studies have
shown the feasibility and accuracy of automated
analysis for assessing LV size and function, which is
currently being applied in clinical trials16 and daily
clinical practice.12,15,22

MR evaluation is complex and often an area of
uncertainty in clinical practice. For more than 2
decades, quantitative parameters have been intro-
duced and promoted to improve the accuracy and
reliability of MR evaluation. However, these quan-
titative measures are often difficult to apply in
clinical practice, have high variability, and can be
discordant between different quantitative
measures. Despite the introduction of new MR
measurements, these limitations have resulted in a
very high degree of variability and decreased con-
fidence in MR evaluations in the clinical setting.23
These limitations have been recognized in recent
guidelines that called for “more automation in
quantitation [of valvular regurgitation] to reduce
variability.”7

Despite the high interest from the medical
community and AI’s great potential for timely
diagnosis and management of patients with valvular
disease, few studies have explored its value in
grading MR severity. Most recent advances in the
application of AI in echocardiography assessment of
valvular disease have been on their anatomic
evaluation.22,24,25

In 2 AI-based MR severity assessment studies,
automated models showed a high degree of accuracy
for MR severity grading, but they used overly
simplistic models involving only color Doppler im-
aging.26,27 Our study differs from them in that we
addressed the complexity of MR by comprehensively
using color and spectral Doppler methods as well as
LV size and hemodynamic parameters obtained in
multiple cardiac cycles and from multiple views, and
by testing against a core laboratory with expertise in
detailed MR severity grading for clinical trials. In
addition, our algorithms proved to perform best when
using multiparametric ML models, a feature unique to
our study and compliant with the ASE guidelines
recommendations.7 A recent study reports high
feasibility in view classification but, different from
our report, focused on the presence or absence of MR
only in the PLAX view as the screening method for
rheumatic mitral disease in children.28 Our auto-
mated ML workflow differed from their study by not
only detecting but also grading the MR severity in
multiple views and including patients with various
degrees and etiologies of MR.

In a field that is rapidly growing, the most
novel aspects of our work are the quantitation of
CWDD and the creation of the ML models that resul-
ted in the development of a comprehensive MR
evaluation model including 9 automated measure-
ments that has high sensitivity, specificity, and
accuracy.

Even at the current time of expanding thera-
peutic options, MR remains underdiagnosed and
undertreated even in communities and centers with
readily available diagnostic and treatment options.29

Delays in diagnosis and proper management of
significant MR can lead to poor outcomes, including
HF, costly and recurrent hospital admission, and
death. The current practice for MR evaluation re-
quires a comprehensive, integrated approach
including clinical information, valve morphology,
etiology, and mechanism of MR in addition to
the combined qualitative and quantitative MR
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The performance of the selected 9 independent MR-related parameters as the best echocardiographic parameters for the MR severity grading and nonsignificant

(none, trace, mild) vs significant (moderate, severe) MR using the preferred ML model is shown. Percentage values in each box refer to percentage of each category as

determined by the core laboratory (true label, columns). A2C ¼ apical 2-chamber; A4C ¼ apical 4-chamber; CW ¼ continuous wave; CWDD ¼ continuous wave Doppler

jet density; LVOT ¼ left ventricular outflow tract; LVEDV ¼ left ventricle end diastolic volume; MR ¼ mitral regurgitation; PASP ¼ pulmonary artery systolic pressure;

PLAX ¼ parasternal long-axis; RAR ¼ regurgitation area ratio; RAP ¼ right atrium pressure; SV ¼ stroke volume; TRV ¼ tricuspid regurgitation velocity; VC ¼ vena

contracta.
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severity assessment. In this context, adopting
AI technologies in echocardiography could improve
diagnosis at a large scale and, therefore, improve
patient screening to provide better care. Specifically
for MR, the concept of a fast, accurate, and
reproducible technology for diagnosis, such as the
models presented here, could have significant im-
plications in the workflow of echocardiography
laboratories by improving reproducibility and qual-
ity performance. Our proposed multiparametric



Sadeghpour et al J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 1 8 , N O . 1 , 2 0 2 5

Automated Mitral Regurgitation Severity Grading by AI J A N U A R Y 2 0 2 5 : 1 – 1 2

10
model had an excellent performance for grading
severity, and, most importantly, it had almost per-
fect accuracy for detection of significant MR, a
distinction that could benefit patients by the rapid
identification of those that would need further
evaluation, should be referred to a specialized valve
or heart failure clinic, be considered for specific
therapies, or, otherwise, identify those with no or
mild MR who have benign clinical course.30 We
believe our proposed approach to MR grading could
bring “echo interpretation expertise” to the com-
munity to facilitate proper referral to specialized
clinics and centers, improving patient care.

STUDY LIMITATIONS. Our study was conducted
retrospectively and involved echocardiograms from a
specific group of patients (those with HF). By
including patients from 2 different clinical studies,
however, the study population was diverse and better
characterized, particularly regarding the echocardio-
graphic evaluation by a recognized core laboratory
that served as the ground truth for MR severity
grading. Nevertheless, patients with HF across the EF
spectrum often have secondary MR, which may not
represent the full spectrum of patients with MR.
Specifically, those with primary MR from leaflet pro-
lapse/flail mostly have eccentric MR jets, which can
result, eg, in poor Doppler alignment of CW Doppler,
lower MR jet density on CW imaging, and, therefore,
may be underestimated by the CWDD algorithm. Our
cohort, however, included patients with eccentric jets
due to asymmetric leaflet tethering (40% of our
cohort had ischemic MR), and the model performed
similarly in those with central and eccentric jets.
Finally, our study was not designed to analyze clin-
ical outcomes related to automated AI-based diag-
nosis of MR severity. Therefore, the positive
relationship between ML-predicted MR severity and
clinical outcomes in our study should be considered
hypothesis-generating. The design of proper clinical
trials in AI and echocardiography with outcomes
reporting is desirable22 and should be the focus in the
future. However, before clinical trials are designed to
determine the clinical impact of AI-based echocardi-
ography, automated AI-based methods of measuring
echocardiographic parameters and detecting cardio-
vascular diseases must be developed, as we have
done in this study. Similarly, the application of these
multiparametric models in large cohorts of patients
from health systems (real world) or research registries
will be needed to prove the ultimate value of our
approach in the general population and everyday
practice.
CONCLUSIONS

A novel, fully automated ML multiparametric
model for grading MR severity using guideline-
recommended parameters is feasible, highly
accurate, and predicts 1-year mortality. Its imple-
mentation in clinical practice could improve echo-
cardiography laboratory workflow and quality,
ultimately improving patient care by facilitating
appropriate referrals to specialized clinics and centers
and by timely offering specific therapies.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Implementing

echocardiographic automated ML models for MR severity

grading in clinical practice could be critical to screen for patients

in need of further clinical evaluation, therapeutic interventions,

or for proper referral to specialized valve or HF clinics. The MR

grading was associated with 1-year all-cause mortality and HF

hospitalizations.

COMPETENCY IN PATIENT CARE AND PROCEDURAL

SKILLS: A novel, fully automated, multiparametric ML model for

echocardiographic image analysis is highly feasible, fast, and

accurate and can, therefore, improve quality and efficiency in the

echocardiography laboratory.

TRANSLATIONAL OUTLOOK: The use of novel automated

ML models creates a feasible, fast, and accurate workflow for MR

severity grading.
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