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Envisioning the Future
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"The true sign of intelligence is not knowledge
but imagination."

—Albert Einstein1
T he journey of artificial intelligence (AI) in
cardiovascular medicine began with pioneer-
ing efforts such as the development of self-

learning neural networks for electrocardiography, us-
ing AI to locate atrioventricular accessory pathways
in Wolff-Parkinson-White syndrome by analyzing
delta wave polarities.2 This laid the foundation for
AI’s integration into cardiovascular diagnostics. As
AI techniques developed and computing power
continued to improve, applications of AI in cardiology
expanded to other fields, including cardiac imaging.

Echocardiography stands as the cornerstone of
cardiovascular imaging and is integral to clinical care
across the spectrum of valvular heart disease. Echo-
cardiography is also witnessing a paradigm shift with
AI integration, enhancing how cardiac imaging is
performed, interpreted, and applied in patient care.
AI in echocardiography focuses on automating mea-
surements and refining data interpretation to address
challenges, such as interoperator variability and the
subjectivity of image assessment.3 For example, AI
algorithms have enhanced image acquisition, the
quantification of left and right ventricular volumes,
systolic and diastolic function, and global
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longitudinal strain, boosting diagnostic accuracy and
enabling faster and reproducible assessments.4

Evaluation of mitral regurgitation (MR) by echo-
cardiography presents inherent challenges due to the
dynamic nature of the mitral valve apparatus, the
complex regurgitant flow patterns affected by
different factors, and the variability in quantitative
parameters under different hemodynamic conditions.
Traditional assessment relies on the echocardiog-
rapher’s skill and expertise, and can result in sub-
jective interpretation susceptible to diagnostic errors.
AI helps standardize these evaluations, reducing de-
pendency on individual operator skill and potentially
decreasing the variability in MR assessment.5 Recent
studies have shown promising results in employing
machine learning (ML) to refine risk assessment and
treatment strategies for MR. In a study of 400 pa-
tients with primary MR, AI identified high-severity
phenotypes, leading to better surgical outcomes,
demonstrated by improved survival rates in French
and Canadian cohorts (P ¼ 0.047 and P ¼ 0.020); this
method outperformed traditional risk evaluations,
evidenced by statistical improvements (Harrell C
statistic; P ¼ 0.480, net reclassification; P ¼ 0.002).6

The EuroSMR (European Registry of Transcatheter
Repair for Secondary Mitral Regurgitation) study took
this further, creating an AI-derived risk score from 18
parameters and data on 4,172 patients, predicting 1-
year postoperative survival more accurately than
existing models (AUC ¼ 0.789); this score pinpointed
a subset of patients with a 70% risk of 1-year mor-
tality, thus refining patient selection for transcatheter
edge-to-edge repair procedures.7 In another cohort of
429 patients with mitral valve prolapse, ML identified
4 phenotypes related to cardiac remodeling,
myocardial fibrosis, and cardiovascular event risk: 2
phenotypes with significant left ventricular (LV) and
left atrial remodeling, and severe MR indicated higher
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fibrosis and cardiovascular event rate.8 This algo-
rithm using MR severity, LV systolic strain, and
indexed left atrial volume improved diagnostic pre-
cision, suggesting that ML can refine mitral valve
prolapse risk assessment and management.8

In this issue of JACC Cardiovasc Imaging, Sadegh-
pour et al9 present a groundbreaking study that uti-
lizes an automated, ML-based, multiparametric
approach to grade MR severity. This method marks a
significant advancement by incorporating a compre-
hensive array of echocardiographic parameters to
achieve remarkable diagnostic accuracy. Phase 2 of
the study employed a substantial data set from 438
patients, drawing from multicenter clinical studies, to
validate the AI model against traditional assessment
methods, achieving an impressive 80% accuracy for
classifying the full spectrum of MR from none/trace to
severe, and further refining this to 97% accuracy for
distinguishing between significant and nonsignificant
MR.9 Their multiparametric model integrated 16
American Society of Echocardiography–recommended
echocardiographic parameters,10 categorized into MR-
specific, chamber size, and hemodynamic parame-
ters.9 Notable among these were vena contracta
measurements from multiple views, jet area ratio,
continuous wave Doppler density, LV end-diastolic
volume, LV outflow tract stroke volume, and pulmo-
nary artery systolic pressure.9 This comprehensive
approach not only enhanced the diagnostic precision,
but also demonstrated strong correlation with
important clinical outcomes, such as 1-year mortality
and heart failure hospitalizations.9

The strength of Sadeghpour et al’s work9 lies in its
utilization of a multiparametric analysis, which aligns
well with current trends in cardiovascular imaging
that seek to leverage the breadth of data available
from advanced imaging techniques. However, it is
important to acknowledge the context of current
American Society of Echocardiography guidelines for
valvular regurgitation,10 which emphasize the
importance of multiple quantitative measurements to
accurately assess MR severity. Although the study
incorporates an impressive array of parameters, some
key quantitative metrics of MR evaluation, such as
effective regurgitant orifice area and regurgitant
volume, were not included in their model. This may
limit the model’s applicability in clinical settings
where comprehensive quantification incorporating
these parameters is crucial for decision-making.
Moreover, the study does not provide detailed data
on the underlying etiologies of MR, categorizing MR
jets only as central or eccentric. This limitation could
affect the generalizability of the findings, as the
pathophysiology of MR may vary significantly, which
in turn could influence the effectiveness of the model
across different patient populations.

Despite the potential transformative impact of AI
on cardiovascular imaging, it is essential to acknowl-
edge its limitations and challenges. Training deep
learning models requires extensive data sets, which
are often difficult to compile for rarer cardiac condi-
tions without multicenter collaboration. Additionally,
the computational resources needed are substantial,
although advancements in high-performance
computing may help mitigate this issue. The effec-
tiveness of AI applications heavily depends on the
quality of the data: poor quality data can render even
the most advanced algorithms ineffective, a concept
encapsulated by the phrase “garbage in, garbage out.”
Moreover, although results from studies like Sadegh-
pour et al9 are promising, they require broader vali-
dation to ensure universal applicability. The
integration of AI into routine echocardiographic
practice faces hurdles, including a lack of randomized
control trials and comprehensive validation studies,
which limits widespread adoption. Future research
should aim to demonstrate AI’s diagnostic and prog-
nostic utility across multicenter studies with diverse
patient populations to ensure its generalizability and
reliability. Ethically, the adoption of AI also raises
questions about the future role of cardiologists in
diagnostic imaging. It is crucial that cardiologists
continue to lead clinical decision-making, utilizing AI
as a supportive tool rather than a replacement for
human clinical acumen. Adhering to rigorous stan-
dards for algorithm transparency and accuracy is vital,
as outlined by initiatives such as the CONSORT-AI
(Consolidated Standards of Reporting Trials-Artificial
Intelligence).11 AI’s integration into echocardiogra-
phy is not merely an enhancement of existing prac-
tices, but a transformation that promises more precise
diagnostics and personalized care. Our commitment
must be to leverage AI to its fullest potential,
improving outcomes for patients while maintaining
the essential human touch that defines quality care.
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