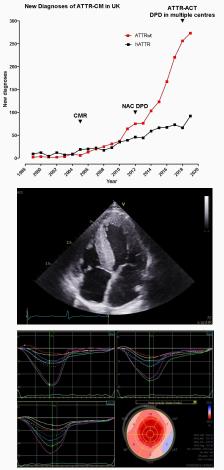
FLAT-ATTR: A fully automated machine learning algorithm to track disease progression in ATTR-CM

Lucia Venneri MD, PhD National Amyloidosis Centre, UK

13th December 2024


Disclosures

- I have nothing to declare

Background

- Transthyretin cardiac amyloidosis (ATTR-CM) is a progressive and fatal cardiomyopathy with a steadily increasing diagnosis over the past two decades¹ and with a highly variable clinical course among individuals
- Echocardiography has the potential to be a useful tool for tracking disease progression. In a large echocardiographic study, changes in SV and minor changes in MR and TR were associated with mortality²
- However, variability in manual measurements by clinicians, currently limits the suitability of echocardiography for longitudinal monitoring and therefore there are no established echocardiographic parameters to assess disease progression in cardiac amyloidosis practice
- Artificial intelligence (AI)-based deep learning algorithms have demonstrated significant promise in cardiovascular imaging for the increased reproducibility and precision over manual measurements

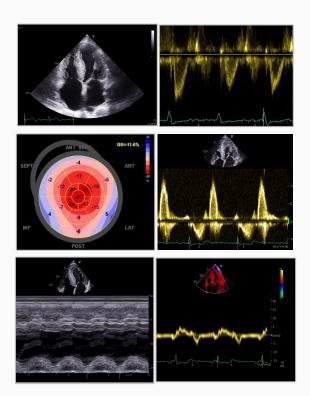
Images courtesy of Dr Lucia Venneri (National Amyloidosis Centre), reproduced with permission ¹Lane T *et al*, Circulation 2019 ²Chacko L *et al*, 2022

Objectives

 This study aimed to evaluate the association between changes in fully automated AI-measured echocardiographic parameters and prognosis in a large cohort of ATTR-CM patients

Methods

- Echocardiographic DICOM images were processed using a fully automated machine learning algorithm, without human interaction (Us2.ai – FDA approved)
- Twelve-month landmark survival analysis to assess the association between changes in echocardiographic parameters and mortality in patients with ATTR-CM followed at the National Amyloidosis Centre (NAC) 2007-2021.

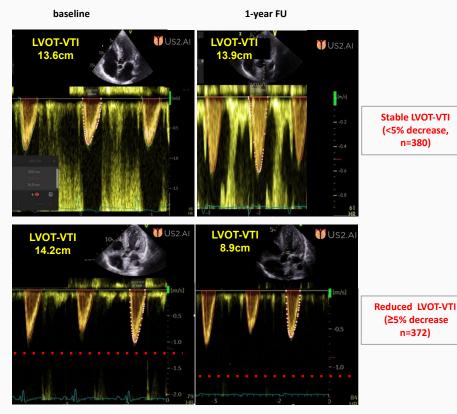


- 752 patients were recruited in the study, 661 patients (87.9%) were male, 495 (65.8%) with ATTRwt-CM and 257 (34.2%) with ATTRv-CM (145 with V122I; 67 with T60A; 45 non-V122I, non-T60A)
- During a median (IQR) follow-up of 40 months (25.5-60),
 334 (44.4%) died

Univariable Cox regression analysis of risk of mortality using change in echocardiographic parameters

Parameter	Univariable from baseline		Baseline to 12- months change	Univariable for 12-months change	
	LVOT-VTI cm	0.95 (0.93-0.97)	<0.001	Absolute change	0.97 (0.94-0.99)
-	-	-	Percentage change	0.99 (0.98-0.99)	0.005
-	-	-	>5% reduction	1.44 (1.17-1.76)	0.001
LVETms	0.99 (0.99-0.99)	<0.001	Absolute change	1.00 (0.99-1.002)	0.77
LA ESV ml(biplane)	1.01 (1.007-1.021)	<0.001	Absolute change	0.99 (0.98-1.006)	0.24
LAA 4-ch cm ₂	1.06 (1.03-1.08)	<0.001	Absolute change	0.99 (0.98-1.005)	0.38
RAA 4-ch cm2	1.03 (0.99-1.06)	0.095	Absolute change	1.001 (0.96-1.045)	0.96
TAPSE mm	0.99 (0.97-1.01)	0.25	Absolute change	0.98 (0.96-0.99)	0.012
RV S' m/s	0.91 (0.88-0.95)	<0.001	Absolute change	0.93 (0.89-0.97)	0.001
IVSd mm	1.08 (1.04-1.12)	<0.001	Absolute change	0.98 (0.93-1.04)	0.55
<u>PWd</u> mm	1.07 (1.04-1.10)	<0.001	Absolute change	1.02 (0.99-1.05)	0.25
LVM g/m2	1.003 (1.001-1.005)	<0.001	Absolute change	1.00 (0.99-1.001)	0.26
RWT	3.33 (1.98-5.63)	<0.001	Absolute change	0.86 (0.48-1.53)	0.61
LVEF%	0.98 (0.96-0.99)	<0.001	Absolute change	1.00 (0.99-1.002)	0.48
lateral S' m/s	0.80 (0.74-0.86)	<0.001	Absolute change	1.00 (0.95-1.06)	0.99
LV GLS %	110 (1.06-1.15)	<0.001	Absolute change	1.04 (0.96-1.12)	0.35
LV LS 4-ch%	1.06 (1.04-1.09)	<0.001	Absolute change	0.99 (0.97-1.02)	0.47
LV SV ml(biplane)	0.98 (0.97-0.99)	<0.001	Absolute change	0.99 (0.98-1.01)	0.76
E/A	1.70 (1.27-2.67)	<0.001	Absolute change	1.05 (0.69-1.62)	0.80
average E/e'	1.05 (1.03-1.07)	<0.001	Absolute change	0.99 (0.96-1.02)	0.60
lateral E/e'	0.86 (0.81-0.91)	<0.001	Absolute change	0.98 (0.97-0.99)	0.008

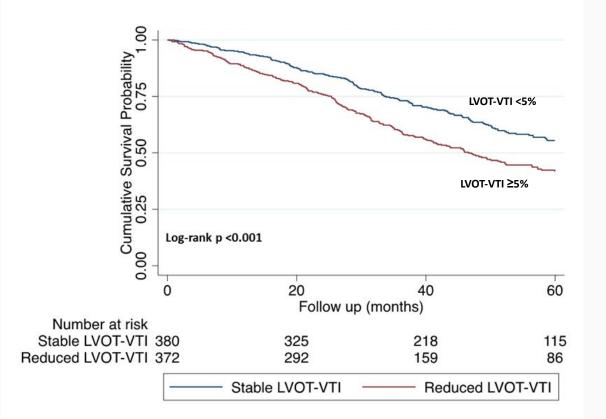
Multivariable analysis of risk of mortality using change in echocardiographic parameters


Parameter	HR (95% CI)	P value
Age	1.04 (1.02-1.06)	<0.001
Hereditary TTR genotype	0.46 (0.33-0.63)	<0.001
log NTproBNP baseline	3.24 (2.02-5.21)	<0.001
eGFR baseline	0.99 (0.98-1.00)	0.19
LVOT-VTI decrease ≥5% at 12-months	1.48 (1.09-2.02)	0.012
TAPSE absolute change at 12-months	1.00 (0.97-1.02)	0.98
Lateral E/e' absolute change at 12-months	1.00 (0.98-1.02)	0.56

12-Month LVOT-VTI changes: a clinically significant marker of SV changes

n=380)

n=372)


EuroEcho-Imaging

THE LEADING ECHOCARDIOGRAPHY CONGRESS

Nearly half of the patients experienced significant ٠ SV decline at 1-year follow-up

	All (n=752)	Stable LVOT-VTI (<5% decrease,	Reduced LVOT-VTI (≥5% decrease,	P value
		n=380)	n=372)	
Age, y	74.1±8.8	73.4±9.1	74.8±8.3	0.044
Male	661 (87.9%)	329 (86.6%)	332 (89.2%)	0.26
Genotype				0.74
Wild-type	495 (65.8%)	248 (65.3%)	247 (66.4%)	
Hereditary	257 (34.2%)	132 (34.7%)	125 (33.6%)	
AF/AFlutter	373 (49.6%)	192 (50.5%)	181 (48.7%)	0.60
IHD	139 (18.5%)	65 (17.1%)	74 (19.9%)	0.32
Diabetes mellitus	119 (15.8%)	58 (15.3%)	61 (16.4%)	0.67
HTN	222 (29.5%)	101 (26.6%)	121 (32.5%)	0.07
NYHA				0.44
1	127 (17.6%)	71 (19.4%)	56 (15.7%)	
11	468 (64.8%)	234(63.9%)	234(65.7%)	
III	118 (16.3%)	58 (15.8%)	60 (16.9%)	
IV	9 (1.2%)	3 (0.8%)	6 (1.7%)	
NAC ATTR stage				0.020
1	424 (56.8%)	226 (60.1%)	198 (53.5%)	
II	242 (32.4%)	121 (32.2%)	121 (32.7%)	
111	80 (10.7%)	29 (7.7%)	51 (13.8%)	
MWT	15.5±2.9	15.5±3.0	15.5±2.7	0.73
Lateral E/e'	14.3±5.5	13.8±5.4	14.8±5.6	0.014
RWT	0.68±0.20	0.67±0.21	0.70±0.19	0.09
LVEF	49.1±12.3	48.7±12.3	49.5±12.4	0.33
LV-LS	-14.6±5.3	-14.5±5.3	-14.7±5.3	0.54
LVOT-VTI	16.8±5.3	15.5±5.0	18.1±5.2	<0.001
TAPSE	16.7±5.2	16.3±5.1	17.0±5.3	0.10

Survival in ATTR-CM patients according to 12-months LVOT-VTI change

Conclusion

- Reduction in stroke volume assessed by LVOT-VTI is frequent, occurring in almost half of the patients at 1-year, and is associated with increased risk of mortality
- A fully automated machine learning algorithm for LVOT-VTI can be used to track disease progression in patients with ATTR-CM
- This has the potential to become the first simple and widely applicable tool to track disease progression and treatment response using echocardiography in patients with ATTR-CM

Acknowledgements

- L. Venneri¹, A. Porcari¹, A. Ioannou², Z. Sezer¹, F. Bandera³, J. Gillmore², S C. Lim⁴, M. Frost⁴, J. Ezekowitz⁵, C S P. Lam⁶, S. Solomon⁷, M.Fontana²
- (1) Royal Free Hospital, London, United Kingdom of Great Britain & Northern Ireland
- (2) University College London, London, United Kingdom of Great Britain & Northern Ireland
- (3) Department for Biomedical Sciences for Health, University of Milano, Milan, Italy
- (4) Us2.ai, Singapore, Singapore
- (5) University of Alberta, Edmonton, Canada
- (6) Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
- (7) Brigham and Women's Hospital, Harvard Medical School, Boston, United States of America

